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| will not cover the injectors (see talk from Katy)
| will not cover the arcs (but advocate diagnostic)
| will not cover cooling limits in the present triplet
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Table 1.0: CLASSIFICATION OF FAILURES

Sc magnets failure modes g T

1.2 excessive motion 1
1.3 structural failure

. 1.4 mechanical componant failure
Operational LS loosepare e
. 1.7 heat shield mechanical failure
Ice blocks causing overpressure
Manufacturing QA 2.0 CONDUCTOR RELATED
. . . . 2.1 conductor damage
Joint installation without solder 2.1.1 conductor breakage
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| Mechanical abrasion of insulation |
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Power supplies/switch control failure 32 insalaiion elscuionl fallure
Structural
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3.2.2 terminal fault
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3.2.5 lead electrical fault
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Potential causes of failures in the LHC

* Mechanical fatigue on coil, structure, busses:
— Powering cycles: 10* per magnet
— Thermal cycles: a few for the LHC
* Singular events and associated thermal and
electrical stress:
— Quenches: order of 10 per magnet
— Heater discharges (triggers): order of 10 per magnet
* Radiation and associated degradation of
mechanical and electrical strength:
— Magnet in the triplet region (Point 1 and Point 5)
— Magnets in the collimators region (Point 7)
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Electrical NC’s in the LHC SC magnets

* To date (M. Bednarek, LSC 31.05.2013) we have 35 NC’s
pending

e Limiting to the cold part, 12 were known before LS1, 7
were identified during the LS1 ELQA

 Magnet exchanged so far
— 2007: 1 dipole (suspected developing interturn short)
— 2008: 2 dipoles for high internal resistance
— 2013: 15 dipoles and 3 quadrupoles, of which

* 13 dipoles for electrical issues (high internal resistance, 4+1 QH
issues, 1 dielectric strength),

* 1 quadrupole for failure of the orbit corrector

— 2018 (?): at least 8 dipoles and 3 quadrupoles, of which
 all dipoles and 1 quadrupole for high internal resistance
* a number “TBD” for other issues “TBD” (e.g. re-training ?)

Warning: we have not pushed the LHC yet



Expected MTBF of SC magnets

Weibull analysis of magnet electrical failure probability
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Expected MTBF of 400 to 500 years, translates in a
range of 3...4 magnets electrical NC’s per year




Delicate details -1/

[

SSS bus bar routing
with marks due to
the contact between
lyre and heat
exchanger tube




Delicate details — 2/2

Contact between MB circuit bus bars and MCS corrector ~ Chip causing a short between the
half moon and the diode

The LHC, as all electrical machines, will most likely
experience electrical faults. This is true for the whole
CERN accelerator complex, and is normal



Summary — SC electromechanics

An MTBF of 400...500 years has been estimated(?) for
the LHC superconducting magnets

This translates in approximately 3...4 magnet
electrical NC’s per year of operation, and at least
10...15 magnets exchanges every long shutdown®

A proposal was made to adapt the main ring spare
policy at the ACC Consolidation Day: procure NbTi
wire, magnetic steel, build MQ’s
(https://indico.cern.ch/conferenceDisplay.py?confld=266926)
Given the estimated MTBF, the probability of
electrical failure of one of the triplet magnets within
the next 10 years of operation is 3 %, i.e. 1 magnet
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Radiation — where Today
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S. Roesler, The Panorama of the Future Radioactive Zones from Now to 2020, May 2013
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Radiation dose in the present triplet (300 fb)
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F. Cerutti, et al., WP10: Energy Deposition and Radiation Damage in Triplet Magnets, April 2013

https://indico.fnal.gov/conferenceDisplay.py?confld=6164



Radiation dose in the present triplet (300 fb)
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In the gizzards of the triplet

Q2 (MQXB)  MCBX
— Conductor insulation: 50 (150) um — Multi-wire cable, each layer
Kapton potted with epoxy resin
— Coil insulation: 400 um Kapton — Two layers potted (glued) in
— Ground insulation: 450 um the final coil with epoxy resin
Kapton

e

— G11R end spacers

N
| o

g }

Fig. I1.1.2.2-4. HGQ coil insulation system: 1,2,3 — pole ground wrap; 4,7, 9 — coil caps;
5, 8 — parting plane layers; 6 — quench heater.



Material limits — Polyimide
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Material limits — G11
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Material limits — G11
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Material limits — Thermosetting resins
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M. Tavlet, et al., Compilation of Radiation Damage Data, CERN 98-01, 1998



Summary on triplet magnets

* Expected dose by LS3 (300 fb'1) with 50 % uncertainty®®
— Range of 27 [18...40] MGy in the Q2
— Range of 20 [13...30] MGy in the MCBX

* Bonding strength (shear) of epoxies is strongly degraded
(80 %) above 20 MGy

* Fracture strength of insulating materials degrades by about
50 % in the range of 20 MGy (G11) to 50 MGy (epoxies,
kapton)

* Insulations (polyimide) become brittle above 50 MGy

* Triplet magnets may experience mechanically-
induced insulation failure in the range of 300 fb!
(LS3 + 1 year)

— Premature quenches (cracks in end spacers)
— Insulation degradation (monitor on line®)

— Mechanical failure (nested coils in MCBX)



Is this a surprise ?

* J. Kerby, M. Lamm, “INNER TRIPLET QUADRUPOLE MQXB"”, LHC-LQX-ES-
0002 rev 1.1, EDMS 256806, 2001:

Projected maximum acceptable dose of the triplet magnets of 20 MGy (based
on G11 spacers)

Expected lifetime of 7 years at 1034 1/cm? s (200 days operation, 50 % lumi
time, dose calculation by N. Mokhov)

Compensatory measures included, as described in N.V. Mokhov, I.L. Rakhno,
J.S. Kerby, J.B. Strait, “Protecting LHC IP1/IP5 Components Against Radiation
Resulting from Colliding Beam Interactions”, LHC Project Report 633, 2003

Note: additional limits from the functional specification

Item Value
Number of Thermal Cycles 25
Number of Powering Cycles 12,000
Number of Quenches 10

Note: the functional specification proposed magnet swaps among points...

* R. Ostojic, 2009: [...] on the lifetime of the LHC triplet [...] That is the reason
| quoted the radiation hardness of the present triplet as “about 400 fb1”

A limit in the range of 300 fb! (with the present evaluation)

is hence consistent with previous analyses
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Dose in the MBW and MQW
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P. Fessia, MBW-MQW in the LHC, Considerations on expected life and available options, 2013




Summary on warm magnets

» Expected dose by LS3 (300 fb?)
— Range of 80....90 MGy in the MBW and MQW

* Limits for the epoxies used are in the range of
50 MGy for MQW and 70 MGy for MBW

* Actions have been proposed and approved
(TETM67 8/10/2013, LSC24 11/10/2013) tO avoid insulation

failure in the period LS2 to LS3

* Mitigation and preparation work is planned
(and mandatory) during LS1



Compensatory measures

e Shield (W inserts and masks)

* Remove magnets (change optics, insert
absorber, simplify powering, add redundancy)

* Build rad-hard replacements for the longer
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Radiation map — LS1 after 1 week
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Radiation map — LS3 after 4 months
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7L extrapolation of dose to LS2 and LS3

Dose [mS/h] after 6 months cooling
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Issues of personal dose — actions

e Access and work in the triplet and collimator area
will be subject to ALARA-level Ill rules

 Measures must be taken to reduce intervention time
by:
— Adopting rad-hard designs for magnet replacements, with
robustness improved by factors (3...5)

— Adding redundancy when and where possible (tolerate
failures of single elements)

— Reducing/facilitating/accelerating manual operations for
disconnection, removal, installation, reconnection, and
introducing “remote handling” concepts

* This work needs to be prepared in LS2, and executed
in LS3 (at the latest) to make further exploitation of
the LHC a success
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Summary

* On the time scale of LS3, and provided the
present operation scenario scales as discussed,
we should expect aging-related and/or radiation
induced failures in

— The triplet magnets (Q2, MCBX) at Points 1 and 5
— Warm magnets in the collimation region of Point 7

* By that time, a magnet exchange in the triplet
may require =1 year (4...6 months cooling time,
6...8 months of work, scenario TBD)

* The situation for the warm magnets is less
dramatic (few units concerned), provided the
area is prepared



A must-do plan

During LS1

— Protect most exposed warm magnets in the collimator area (4 MBW +
4 MQW)

— Survey the triplet to prepare for repair in the following period (LS1-
LS2)

Between LS1 and LS2

— Design modifications to collimator area for long term operation after
LS3

— Work out a baseline for triplet replacement after LS2, and design
triplet modification for long term operation after LS3

During LS2

— Shield warm magnets in the collimator area (6 MBW + 29 MQW)
— Prepare triplet area and tools for works in LS3

During LS3

— Preventive triplet exchange (?)

— Modify hardware layout and (possibly) machine operation parameter
of critical radiation exposed areas






Notes and caveats

1.

The estimation is based on the infancy of hardware and operation, and
before reaching full electro-mechanical stress conditions

This is obviously consistent with the present work (LS1, 18 cryo-magnets)
and plans (LS2, in excess of 10 cryo-magnets)

According to benchmarking and expectations by F. Cerutti, (CERN EN-STI)

| strongly advocate for the development of hardware and procedures for
the on-line monitoring of the dielectric strength of the LHC

A number of effects, such as ion irradiation (see next slides) may cause
localised degradation, which is difficult to quantify today



The ion case

Figure 12 refers to the results of an experiment recently carried out in the frame of a common
scientific activity between CERN and GSI to understand the difference of electrical damage produced,
at given absorbed doses, by different ionizing radiation on polyimide tapes. The effect of heavy-ion
radiation on the dielectric strength is noticeable already at very low radiation doses.

Voltage breakdown on 50pm polyimide
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Fig. 12: Dielectric strength of irradiated polyimide [courtesy R. Lopez, CERN, and T. Seidl, GSI]

By courtesy of P. Fessia, CERN TE-MSC



Observation of heavy-ion tracks in polyimide by means
of high-resolution scanning electron microscopy

Sameer Abu Saleh, Yehuda Eyal *

Department of Chemistry, Technion — Israel Institute of Technology, Haifa 32000, Israel
S.A. Saleh, Y. Eyal | Nucl Instr. and Meth. in Phys. Res. B 208 (2003 ) 137-142 139

(b)

(d)

2000m
Fig. 1. HRSEM images of etched ***U-ion tracks in polyimide. The etching times of the samples displayed in panels (a), (b), (c). (d). (e)

and (f) were 40 s and 1, 2, 3, 4 and S min, respectively. )
By courtesy of P. Fessia, CERN TE-MSC



