ATLAS and CMS Upgrade programs and performance goals

RLIUP LHC workshop Archamps, Oct. 29

D. Contardo

- o Physics goals and detector longevity in presentations of Fabiola & Beniamino
- o In this talk
 - ATLAS and CMS upgrades through LHC luminosity rise
 - Focus on performance at high rate and pile-up

The challenge of high luminosity

Detector measures charge deposits:

- Charged particles (tracker)
- e/γ (electromagnetic calorimeter)
- Hadrons (hadronic calorimeter)
- μ (gas chambers)

- Sophisticated algorithms combine all information to reconstruct:
 - Physics objects
 - Identified and isolated particles
 Jets total and missing energy
 - Decay of fundamental particles
 - W, Z, H, t ...

The challenge of high luminosity

- With multiple collisions per bunch crossing (Pile-Up) we mainly rely on the measurement of the charged track origin in the tracker to properly associate physics objects to the primary interaction of interest
 - The increasing PU affects
 - Mostly the Tracker and Calorimeters and the online Trigger event selection
 - And the data flow and the event complexity increase also requires higher readout bandwidth for all detectors and more computing capabilities

Experiments can reconstruct high piled-up event but are not designed to sustain it as a mean

ATLAS and CMS upgrade stages

LS1:

- Complete original detectors and consolidate operation for nominal LHC beam conditions 13-14 TeV, 1 x 10³⁴ Hz/cm², Ave. Pileup (<PU>) ~ 25
- Prepare or start upgrades for higher <PU>

LS1 through LS2:

- Prepare detector to maintain physics performance for
 - $1.6 \times 10^{34} \,\text{Hz/cm}^2$, <PU> ~ 40, $\leq 200 \,\text{fb}^{-1}$ by LS2
 - 2.5 x 10^{34} Hz/cm², <PU> ~ 70, ≤ 500 fb⁻¹ by LS3

LS2 through LS3:

- Prepare for $\geq 5 \times 10^{34} \,\text{Hz/cm}^2$ (with leveling), <PU> 140 total of ~ 3000 fb⁻¹ in ~10 years operation consider higher PU operation
 - Replace subsystems that no longer function due to radiation damage or aging
 - Maintain physics performance at very high PU

ATLAS upgrades for Phase 1

Trigger/DAQ

→ New backend electronic systems

→ Fast Track Trigger (FTK) input at High Level Trigger

- before LS2

Liquid Argon calorimeter (barrel - endcap)

→ Front-end for finer granularity in Trigger - during LS2

Forward proton spectrometer (AFP)

Muon systems

→ Complete muon spectrometer

- during LS1

→ New Small Wheel forward muon chambers (micromegas)

- during LS2

Pixel detector

→ Insertable Barrel Layer

- during LS1

CMS upgrades for Phase 1

Trigger/DAQ

TDRs: Pixel http://cds.cern.ch/record/1481838?ln=en - HCAL http://cds.cern.ch/record/1481837?ln=en - L1-Trigger http://cds.cern.ch/record/1481837?ln=en

ATLAS upgrades for Phase 2

Trigger/DAQ

- → L1 rate at least 500 kHz
- → Tracks at L2 20 µs latency at least 200 kHz

Calorimeters: Liquid Argon - Tile calorimeter

→ New front-end and back-end electronics (full digital information at L1 trigger)

New Tracker

- → Longevity occupancy readout bandwidth
- → Implement Track Trigger in L2
- \rightarrow Extend η coverage?

Lol in 2013 https://cds.cern.ch/record/1502664/

CMS upgrades for Phase 2

Trigger/DAQ

→ L1 rate up to 1 MHz with tracks

- → longevity
- \rightarrow Extend coverage up to $\eta \sim 4$?
- → Precise timing measurement (also in barrel)?
- → Longevity occupancy readout bandwidth
- → Implement Track Trigger in L1
- \rightarrow Extend coverage up to $\eta \sim 4$?

ATLAS and CMS Tracker upgrades

From Phase 1 to Phase 2

Upgrade of ATLAS and CMS pixel detectors in Phase 1

Common features

- 4 space points and smaller inner radius (3 cm)
- Acceptance up to $\eta = 2.5$
- Lighter detector

ATLAS Insertable Barrel Layer

- Use planar (75% at smaller eta) and 3D (25% at higher eta) technologies
- → Installation during LS1

CMS new detector

- Similar technology as present
- New readout chip for high rate
- → Installation in Year End Technical Stop 2016-17

Performance of pixel detectors in Phase 1

- Improved track reconstruction efficiency and resolution
- Improved association of tracks at primary vertex and improved b-tagging (close secondary vertex)
 - → Illustration below, gain in efficiency squares for multiple objects

- Pixel detector upgrade is needed for Phase 1
- Can handle up to ~ 70 PU with present detector performance

Trackers for Phase 2

- At 140 PU Phase 1 track reconstruction performance degrades significantly
 - Despite significant improvements in offline algorithms and tuning (efficiency versus rate of fake tracks)

- Tracker requisites for Phase 2:
 - Higher granularity for efficient track reconstruction at 140 to 200 PU
 - And also increased readout bandwidth and improved computing and algorithms capabilities
 - Low beam pipe radius (as now) for precision
 - Integration in hardware Trigger level

ATLAS and CMS Phase 2 Tracker designs

Common features

- Granularity
 - Strip pitch ~ 80-90 μm & length ~ 2.5/5 cm in inner/outer layers (& macro-pixel sensors in CMS 1.5 mm long)
 - Pixel pitch ~ 25-30 μm and ~ 100 μm length
- Sensor Technology
 - n-in-p planar technology for increased radiation hardness
 - n-in-n, 3D, diamond or other technologies for innermost layers
- Trigger implementation
 - Custom ASIC Associative Memory chips (as developed for FTK) for pattern recognition followed by a track fit in FPGA

Specific configurations

- CMS trigger read-out at 40 MHz Pt-module concept select "stubs" for tracks with Pt ≥ 2 GeV
- ATLAS read-out region of interest at ≥ 500 kHz
- Proposal to extend coverage of Pixel detectors up to |η|~ 4
 - Associate jets to primary vertex through track matching

Performance of Phase 2 Trackers

- Light weight → improved momentum precision and lower rate of photon conversion
- Lower pixel size → improved tagging efficiency - good performance up to 200 PU
- o η extension → lower rate of fake
 jets in region of VBF processes

This will have major benefit for key physics channels at HL-LHC

ATLAS and CMS Trigger upgrades

From Phase 1 to Phase2 (includes upgrades of calorimeter and muon detectors)

Upgrade of ATLAS and CMS L1-Trigger systems in Phase 1

- o In Phase 1 ATLAS and CMS L1-Trigger bandwidth is limited to 100 kHz
- Hardware event selection is based on calorimeter and muon information

CMS simplified menu	8 TeV 7E33 ~25 PU		14 TeV 2E34 50 PU	
	Thresh (GeV)	Rate (kHz)	Thresh (GeV)	Rate (kHz)
Single EG	22	10	46	10
Single IsoEG	18	9	31	9
DoubleEG	13, 7	9	22, 12	9
Single Muon	16	9	50	9
Dble Muon	10, open	5	35, open	5
EG+Mu	12, 3.5	3	21, 6	3
Mu+EG	12, 7	2	25, 15	2
SingleJet	128	2	188	2
DoubleJet	56	10	132	10
QuadJet	36	2	96	10
Double Tau	44	2	56	2
MET	36	7	84	7
нтт	150	2	511	2

- Aside, threshold raise to remain within
 100 kHz at 2 x 10³⁴ Hz/cm² without upgrades
- Multi-object trigger rates are highly non linear with increasing PU
- Physics acceptance will be significantly affected (example in plot below)

L1-Trigger upgrades are needed to operate at 50 pile-up

Upgrade of ATLAS and CMS L1-Trigger systems in Phase 1

Common features

- Higher bandwidth and processing power with modern FPGAs and xTCA back-plan
 - Improved calorimeter granularity
 - Improved muon trigger with new chambers and readout
 - More objects and topological triggers

CMS MP7 calorimeter trigger board & µTCA crate

ATLAS

- Fats Track Trigger input at HLT
- → Installation through LS1 to LS2

o CMS

- New architecture (Time Multiplexed Trigger) with full event in 1 Processor
- → Slice after LS1 to grow to commissioning of new trigger in parallel for 2016 run

Upgrade of ATLAS and CMS Muon chambers in Phase 1

Similar issues and benefit in trigger for upgrades in ATLAS and CMS

Upgrade of ATLAS and CMS Calorimeter Trigger systems in Phase 1

- Different implementations in ATLAS and CMS but similar benefits
 - e and γ isolation with PU subtraction
 - Jet finding and Et missing with PU subtraction
 - Improved τ identification
 - μ isolation
- Global trigger with topological capabilities
 - Mass selection, angular correlations...

Trigger/DAQ systems for Phase 2

o ATLAS

- Increase Level 1 bandwidth to 500 kHz in 5 μs latency
 - Readout of tracker information in Region of Interest
- Level 2 in 20 μs latency with tracks and 200 kHz HLT input
- Possible HLT output up to 10 kHz

→ Requires

 Upgrade of front-end and back-end electronics of Calorimeter and Muon detectors

o CMS

- Readout Tracker "stubs" at 40 MHz
- Readout crystal granularity in ECAL
- Increase latency to 10 μs and level 1 rate up to 1 MHz
- Possible HLT output up to 10 kHZ (present HLT rejection)

→ Requires

- New ECAL Barrel front-end electronics
- Upgrade of back-end electronics
- Increased computing power HLT can benefit from L1-track reconstruction (as for ATLAS phase 1 FTK)

Performance of Trigger/DAQ systems for Phase 2

Track trigger provides

- High momentum resolution for improved momentum selection of leptons
- Surrounding tracks for isolation of $e/\gamma/\mu/\tau$
- Association of trigger objects to a primary or secondary vertex to reduce combinatorial effect of PU in multiple object triggers (especially Jet triggers)

Increase of L1 bandwidth provides

- Flexibility to allocate higher trigger bandwidth (lower trigger thresholds) for objects where track-trigger is less efficient
- Further margin to operate at PU beyond 140

Studies confirm significant rate reductions as expected - with factor ~ 10 for lepton triggers, with good efficiency - this allows to maintain low trigger thresholds

Another means of pile-up mitigation: collision density

Preliminary studies with CMS Phase 1 detector

- Tracking acceptance covers flat luminous region
- No significant tracking efficiency difference at 140 PU
- Vertex finding efficiency decrease & number of merged vertices increase for Gaussian density
- Track association to primary and secondary vertices will be more efficient with flat density
 - Improved corrections to calorimeter energies
 - Improved b-tagging efficiency. Ex. a 10% gain as shown in right bottom plot will increase
 2b-tagging efficiency by ~ 40 %

Scenarios of interaction density / crossing S. Fartouk presentation at ECFA workshop

Another means of pile-up mitigation: precise timing

Tracking does not allow to mitigate PU effect due to neutral particles

- Limiting performance for photon and Jet ID and energy resolution at high PU
- Precise timing measurement in front or within calorimeters with ~ 30 ps could allow to significantly reduce number of fakes and background
- This would depend both on z and timing distributions of the collisions in the bunch crossings
- More studies to estimate benefit and R&Ds are on-going to develop technical solutions

Concluding remarks

- Phase 1 upgrades are needed to maintain performance beyond 1 x 10³⁴ Hz/cm², PU ~ 25
- With these upgrades ATLAS and CMS will be able to operate with good performance up to PU of ~ 70 and integrated luminosity ~ 500 fb⁻¹
- For Phase 2 HL-LHC physics program ATLAS and CMS are preparing for operation up to 140-200 PU - but with luminosity leveling depending on performance at high PU
 - Present simulations assume 5 x 10³⁴ Hz/cm², 140 PU with a Gaussian luminous region
- A lot of work is ongoing to understand the limitations with Phase 1 detectors and benefits with Phase 2 upgrades
 - Important effort to develop and tune data reconstruction and physics analyses
- A flat density luminous region scenario as presented at the ECFA workshop could be effective to allow detectors to run at higher PU
 - But limitation might remain due to neutral particles collision time dispersion & precision timing could be a mean to mitigate this PU effect

It is essential that Accelerator & Experiments investigate all opportunities to mitigate PU effects to fully profit from the LHC High Luminosity potential