Detector limits

Beniamino Di Girolamo - CERN

Outline

- Limits from radiation damage and ageing (detectors)
- Limits from pile-up
- Limits from ageing (infrastructure)
- Limits, corrective measures, upgrades

I am greatly indebted to the ECFA workshop speakers

Present LHC Tracking Sensors

Silicon tracking detectors are used in all LHC experiments: Different sensor technologies, designs, operating conditions,....

LHCb VELO

ATLAS Pixel Detector

CMS Strip Tracker IB

CMS Pixel Detector

ALICE Drift Detector

ATLAS SCT Barrel

Sensor Technology in Present Experiments

- p-in-n, n-in-p (single sided process)
- n-in-n (double sided process)
- Choice of sensor technology mainly driven by the radiation environment

	Fluence 1MeV n _{eq} [cm ⁻²]	Sensor type
ATLAS Pixel*	1 x 10 ¹⁵	n-in-n
ATLAS Strips	2 x 10 ¹⁴	p-in-n
CMS Pixels	3 x 10 ¹⁵	n-in-n
CMS Strips	1.6 x 10 ¹⁴	p-in-n
LHCb VELO	1.3 x 10 ^{14**}	n-in-n, n-in-p
ALICE Pixel	1 x 10 ¹³	p-in-n
ALICE Drift	1.5 x 10 ¹²	p-in-n
ALICE Strips	1.5 x 10 ¹²	p-in-n

G. Kramberger, Vertex 2012

n-side readout (n-in-n, n-in-p):

- Depletion from segmented side (under-depleted operation possible)
- Electron collection
- Favorable combination of weighting field and
- Natural for p-type material

^{* 5}x10¹⁵ for IBL; ** per year

Petra Riedler

Radiation Damage Effects in Sensors

- Effects observed in ATLAS, CMS and LHCb (lower luminosity in ALICE)
- Main challenge for the sensors is an increase in leakage current:
 - Risk of thermal runaway -detector becomes inoperable
 - Operate sensors at low temperatures (see talk by B. Verlaat)
 - Increase in shot noise degraded performance
- Leakage current increases with integrated luminosity in agreement with the predictions

Further effects:

- Sensor depletion voltage changes with radiation damage
- Loss of signal due to radiation induced damage

Effects will increase for HL-LHC

Leakage current vs. integrated luminosity (examples)

Excellent agreement over 4 orders of magnitude, need a good knowledge of inputs (L,flux,T).

LHCb VELO
Snoek, Hiroshima 2013

Radiation damage: silicon detectors

- The Run 1 experience gives us a lot of confidence in the models and calculations
 - The agreement is good, within 10-30%, that is remarkable given all the safety factors used at the time of the comstruction
- The models can be used to make predictions and to extrapolate the life time expectations
 - I could predict the type-inversion of two of the three ATLAS pixel layers within 1 fb⁻¹ (the third did not yet go through enough radiation)

Radiation damage: silicon detectors

- Summarizing the effects scale as ~1/r², in ATLAS and CMS we have silicon layers at radii r going from ~ 3-4 cm to ~ 120 cm
- Just to get a ball park number (very rough, forgive me):
 - $\phi(r) \sim (0.6 \cdot A \cdot r^{-2}) \cdot 10^{14} \text{ 1 MeV n}_{eq} \text{ cm}^{-2} / \text{fb}^{-1} \text{ (r in cm)}$
 - Provided that they are kept cold! A is the "cooling tax". If the detector is not cold enough then A < 1.
 - For example a layer at 5 cm that can stand up to a fluence of 10¹⁵ 1 MeV n_{eq} cm⁻² would reach that level after ~400 fb⁻¹ (ATLAS current innermost layer, A=1)
 - Example a layer at 4.4 cm that can stand up to three times the 10¹⁵ fluence would reach it at ~500 fb⁻¹ if A =0.6 (CMS current innermost layer).

What happens if a layer is inefficient

Detector ageing

Almost 1:1 10% inefficiency reflects to 10% worsening of performance in reconstruction

...but it becomes a factor ~ 1.5 on more complicated quantities like the light jet rejection vs. the b-tagging efficiency

BL IBL 10% B-layer inefficiency

ATLAS

ATLAS 10% B-layer inefficiency

The loss of a complete layer is catastrophic

Radiation damage: calorimetry

Extrapolated Signal Degradation of CMS Hadron Endcap

Extrapolated degradation based on exponential parameterizations of observed damage as a function of sampling depth (layer) and η At 500 fb⁻¹, in the high η region, signal drops to 5% or less of the original value.

CMS will upgrade Front End Electronics of HE (and HB) in LS2.

This upgrade will ensure performance of HE up to LS3:

- ✓ Photon Detection Efficiency (PDE) of SiPMs will be x3 higher than in present photodetectors.
- ✓ Depth segmentation will allow for re-weighing of radiation damage degradation.

CMS HCAL Endcap calorimeter will be replaced during LS3

31

Radiation damage: calorimetry

Summary table

Experi -ment	detector	technology	Critical condition	maximal value for Phase2 of LHC	Expected degradation, considered mitigation
ALICE	PHOS	PbWO4	Hadron fluence	< 10 ⁹ h/cm ²	ОК
ALICE	EMCal/Dcal	Pb/Scint Shashlik	Radiation Dose	~ 0.1 kRad	ОК
LHCb	ECAL	Pb/Scint Shashlik	Radiation Dose	~ 6 Mrad	will replace central cells during LS3 (spares exist)
LHCb	HCAL	TileCal	Radiation Dose	~ 1 Mrad	Not critical, accept the loss
ATLAS	ECAL Barrel	LAr	Inst. luminosity	OK up to 10 35 cm $^{-2}$ /s	ОК
ATLAS	ECAL Endcap	LAr	Inst. luminosity	OK up to 5*10 ³⁴ cm ⁻² /s	OK, re-calibrate if required
ATLAS	HCAL Endcap	LAr	Inst. luminosity	OK up to $8*10^{-34}$ cm $^{-2}$ /s	OK
ATLAS	HCAL Barrel	TileCal	Radiation Dose	~ 0.3 Mrad	Re-calibrate
ATLAS	Forward	LAr	Inst. luminosity	Possible degradation above 2*10 ³⁴ cm ⁻² /s	May have to replace or add new detector during LS3
CMS	ECAL Barrel	PbWO4	Hadron fluence	2*10 12 h/cm 2	Re-calibrate
CMS	HCAL Barrel	Brass/Scint	Radiation Dose	~ 0.1 Mrad	Re-calibrate
CMS	ECAL Endcap	PbWO4	Hadron fluence	~ 2*10 ¹⁴ h/cm ²	Will be replaced during LS3
CMS	HCAL Endcap	Brass/Scint	Radiation Dose	~ 10 Mrad	Will be replaced during LS3
CMS	Forward	Steel/Quartz fibers	Radiation Dose	~ 500 Mrad	Re-calibrate

10/2/13

Pawel de Barbaro, University of Rochester: Calorimetry/Detectors for HL-LHC

43

Radiation damage: summary

- The silicon detectors will hit limits at ~400-500 fb⁻¹
 - The outer layers will follow with the rough scaling mentioned earlier
 - A missing layer has catastrophic effects: the detector needs to be upgraded
- The calorimetry is also affected and at the same threshold of ~ 500 fb⁻¹

Pile-up

- The effects of pile-up can be visible on:
 - Memory buffers on front-end chips
 - Links between the front-end and the back-end electronics
 - Limitations in processing power in back-end electronics
 - Links between the back-end electronics and the rest of the data acquisition

Effects of pile-up: simplified

Link occupancy at 100 kHz L1 Trigger								
	μ	B-Layer	Layer 1	Layer 2	Disks			
50 ns	37	51%	45%	69%	40%			
25 ns; 13 TeV	25	47%	42%	65%	37%			
	51	71%	67%	88%	52%			
	76	95%	97%	148%	75%			

Number of bad modules (bad+active) per event per LB, barrel layer 2

Example of link saturation

Example of processing power limitations

Summary of pile-up limitations

- The current detectors have been designed for a pile-up of 25 events
 - We surprisingly managed to manage last year with ~ 37 pile-up events
 - We equip ourselves to be able to survive up to ~
 50 pile-up events (not all detectors)
 - We won't be able to stand 140 pile-up events without a substantial upgrade

Expected upgrades

- Essential upgrades
- "Nice to have" upgrades
- What are the PICs and CONs for the experiments

LHC Performance Projections

After the LS3: 5.10³⁴ cm⁻²s⁻¹ and 300 fb⁻¹/y

Essential upgrades

- It is difficult to distinguish between essential and "nice to have" upgrades for the inner detectors
 - The effects of both link saturations and ageing/ complete damage are very big

ATLAS and CMS PICs

- Both PICs are concentrated before LS3 (even before LS2)
- ATLAS Pixel and Strips act on the back-end electronics to avoid link saturations and processing performance bottlenecks
- ATLAS Pixel did a PIC on services to restore the detector to 99% and to cure link saturations
- CMS Pixel did a PIC to eliminate some bottlenecks
- ATLAS is installing a 4th layer (IBL) to fight against the ageing of the actual innermost layer
- CMS will install a new Pixel detector to fight against the ageing and the pile-up increase

ATLAS and CMS PICs

ATLAS

The PICs and why no PIC beyond PIC?

- We are forced to act on our Pixel and Strip detectors
 - Higher instantaneous luminosity than design, up to a factor 2.5-3 and tout de suite
 - I still remember in our TDRs: "LHC will start at a lower lumi, we will do a lot of b-physics for 3 years, then..."
- By the time we will be at the LS3 threshold the inner detectors start to reach the 400-500 fb⁻¹ limit
 - They will be dead soon after LS3
 - It takes long time to change them
 - a year stop is not enough: ATLAS has 100 M channels,
 92 M are from the Pixel detector: imagine the services

Infrastructure improvements and ageing effects

- Many examples given at Aix-les-Bains workshop, few are reported here
- The back-end electronics is today based on VME standards. It will get old, obsolete, difficult to maintain
 - New trends in telecommunications and higherspeed needs pushing towards different standards (xTCA) and/or commodity PCs
 - More speed = more power needed = more cooling needed
 - The current infrastructure needs upgrades

Infrastructure improvements and ageing effects

- At the same time the cooling infrastructure is getting old
 - Old pipes showing weakness
- Higher luminosity = higher activation
 - Air circulation and possible activation may become a problem
 - The current infrastructure needs to be improved
- Elevators and crane ageing
 - Age and non rad-hard components (cabling, controls)

Limits, corrective measures, upgrades

- Here touched just the most important detector limits
- For some of them corrective actions can be made
 - Replacement of cabling, electronics, pipes
 - Additional links to overcome saturations
- For some other we really need upgrades
 - Detector layers will simply become non operational with catastrophic effects on the physics already between 400 and 700 fb⁻¹

Conclusion

- Tried to keep it simple
 - The radiation damage effects would deserve a lot more information (different effects at different radii, etc), but a ball park number is sufficient
 - The ageing of both detectors and infrastructure plays a role on top of the radiation and activation effects
- The bottom line is that to go beyond 500-700 fb⁻¹ upgrades of detectors and infrastructure are needed (Didier will present what and when)

