Session 3 Performance Improving Consolidation and Upgrade scenario 1

Malika Meddahi, Lucio Rossi

Thanks to all speakers and contributors

PICs in the injectors: What are we talking about?

- K. Hanke

PERFORMANCE IMPROVING CONSOLIDATION:

Replacement or upgrade of a system justified by consolidation but with the goal of improving performance

Clear definition but some overlaps and grey zone with pure consolidation and US 1 and 2.

Time drivers and minimum single block

LIU-PSB: minimum single block 12 m

LIU-PS: minimum single block 3 m

LIU-SPS: minimum single block **6 m**

=> all time estimates depend strongly on available resources (manpower)

=> consequent amount of work to be done in parallel for all machine

=> to be considered with the Cons, maintenance, upgrade preparatory work

Cost of PICs

LIU-PSB: 50 MCHF (essentially LIU-PSB budget¹ without the Linac4 part)

LIU-PS: 16 MCHF (80% of total budget 20 MCHF²)

LIU-SPS: 23 MCHF (30% of total budget 77 MCF)

1: total budget 60.8 MCHF

²: baseline 20 MCHF, with all options 32 MCHF

 PICs are mandatory and must be fully implemented in LS2 in the injectors regardless of which upgrade scenario is chosen

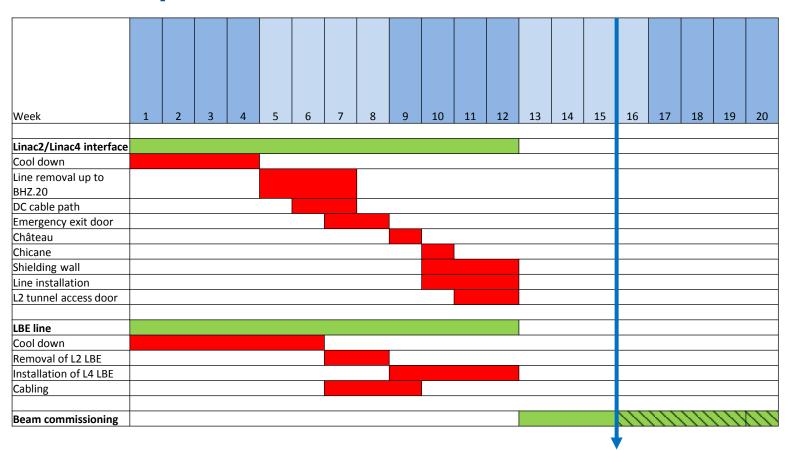
PICs: what do we gain in beam performance? – Gianluigi Arduini

PIC @ 6.5 TeV (Pile-up limit at 140)

	Lev. time [h]	Opt. Fill length 2012 6h	η _{6h} /η _{opt} [%] Goal <50%	φ _{6h} /φ _{opt} [%] 2012 36%	Int. Lumi for η=50% for 6h /opt. fill length Goal > 70 fb ⁻¹	Max. Mean Pile-up density/Pile-up [ev./mm]/[ev./xing]
BCMS - 40/20	-	6.5	37/37	25/26	93/94	0.97/84
Standard - 40/20	-	7.3	40/40	27/28	87/88	0.79/69
BCMS - 50/25	-	6.8	39/39	26/27	89/89	0.77/78
Standard – 50/25	-	7.6	43/42	28/30	82/83	0.63/64

- The luminosity target can be reached with 40/20 optics
- BCMS: slightly higher performance but more sensitive than standard scheme to additive sources of emittance blow-up
- 50/25 optics provides margin in aperture and offers a reduction of the pile-up density below 0.7 events/mm
- Key questions and studies required in Run 2 have been sketched Understanding and Control of the additive sources of blow-up; Confirmation of the feasibility of β*-levelling as a possible solution for IP8; Confirmation of the feasibility of scrubbing the dipoles down to SEY=1.3-1.4 possibly with dedicated beams; Full understanding of the stability limits forusingle and two beams unit et al.

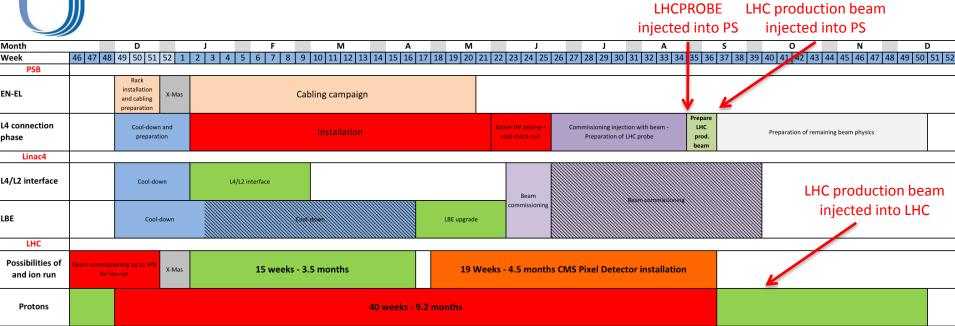
Which beams in the injectors fulfil HL-LHC Upgrade Scenario 1 goals? Simone Gilardoni


	lb(10 ¹¹)	ε (μm 1σ norm)	
US1 requirements (LHC collision/injection Baseline)	1.5/ 1.58	1.5/1.25	
US1 requirements (LHC collision/injection Alternate)	1.2/1.26	1/0.83	LHC
US1 NEW requirements (LHC collision/injection Alternate)	> 1.45e11	> 1.8	
Linac4 + 2 GeV + SPS LLRF upgrade US1 (PS Standard scheme – 72 bchs)	1.45	1.37	
Linac4 + 2 GeV + <u>full SPS upgrade</u> (<u>PS Standard scheme</u> – 72 bchs)	2.0	1.88	LIU
Linac4 + 2 GeV + SPS LLRF upgrade (PS BCMS scheme – 48 bchs)	1.45	0.91	at SPS extraction
Linac4 + 2 GeV + <u>full SPS upgrade</u> (<u>PS BCMS scheme</u> – 48 bchs)	2.0	1.37	

Large bunch intensity in LHC more important than low emittances

200 MHz RF Upgrade necessary to match the preferred requirements of LHC-US1 with unchanged longitudinal parameters at LHC injection.

Work Effort in the LHC Injector Complex, Including Linac4 Connection, for the Upgrade Scenarios – Jean-Baptiste Lallement, Bettina Mikulec



Linac4: 15 weeks to deliver a beam to the PSB

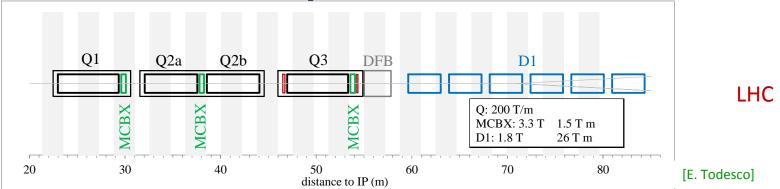
Overall L4 Connection to PSB

- Duration for the Linac4 connection to the PSB: 9.2 months
 - Deliverable: LHC production beam injected into PS; coincides with injection of LHCPILOT beam into the LHC
 - Other physics beams to follow at an estimated rate of ~2/week
- First beam to the PS after 9 months
- Ion run and CMS pixel detector installation in parallel?
 - Ion beam commissioning in LHC ion injector chain end of 2016 in parallel to p run

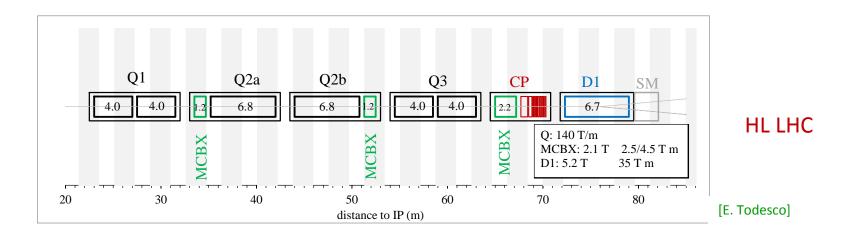
 - LHC ion run of up to 3.5 month after X-mas CMS pixel detector installation: 4.5 months Could other activities profit? (NA61/SHINE etc.)

LHCPILOT injected into LHC

LIU LS2 Planning

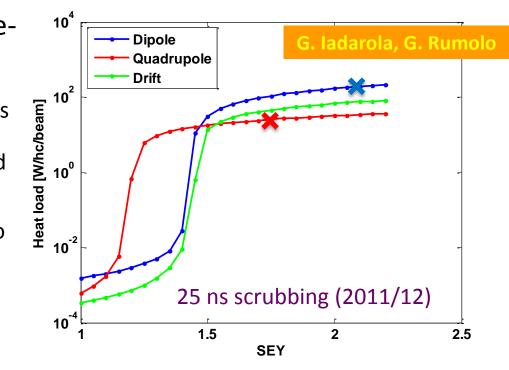

Month	D	\perp	J	\perp	F	\Box	М		7	Α	\perp	М	\perp	\equiv	J	\perp	J	=		Α			S	\Box	(0	Ι	N			D		J			F		٨	N		Α		М			J		J		Α	١		S		0	\mathbb{I}	N	T	D	
	1 2	2 1	1 2	. 1	1 2	2	1	2	1	2	1	1	2	1	2	. []	1	2	1		2	1	2	<u>2</u>	1	2	T.	1 :	2	1	2	1	1 2	2	1	2	2	1	2	1	2	2 :	1	2	1	2	1	2	<u>2</u>	1	2	1	2	1	2	_1	. 2	2	1	2
PSB								_					_	_			_			_																																						_		J
L4 connection +																																							В	Bea	ım			od.					_									_		
2 GeV upgrade	DSR I S2 works - 15 months																				7																																							
2 Gev upgrade	LHCPROBE E																			1																																								
PS																																																												
2 GeV injection	Beam g																					7																																						
and other	PS LS2 works - 14.5 months																																																											
upgrades/cons.																			- /																																									
SPS																																																												
US1+US2; aC-					47																																											Bea	m		I H	Cpr	rod.	Т		—	—	_	_	\dashv
coating, 200														-	SPS L	15	2 1	101	lec.	1	6 5	-	on	+he																								com			LHC prod.									
														31	P3 1	132	2 W	OFF	KS '		6.5	III	On	tns	5																										beam									
MHz RF etc.																																															LH	ICPI	ILU	וי	(S	(scrub!)								/
LHC																																																												
Protons	Shutdown - 20.2 months										R	lecc	omn		sion eam		C wi	ith																																										

LS2:

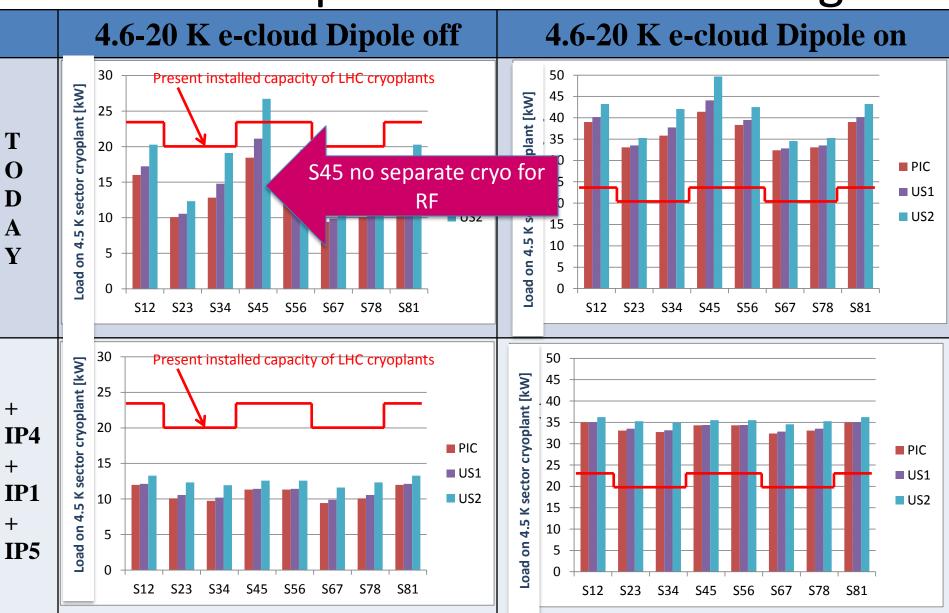

- Time line driven by PSB activities (impressive cabling work to be performed -> coherent scheduling in progress taking into account the overall requests needed for other projects)
 - > PSB first beam (LHCPROBE) to the PS: **after 17.5 months**
 - PS ready for beam from PSB already after 14.5 months -> need to gain 3 m in PSB
 - > SPS ready for beam from PS: **after 16.5 months**
- → First injection of <u>LHCPILOT into the LHC</u>: after ~20.5 months
- → Minimum time for injection of LHC production beam into the LHC: after ~22 months (scrubbing!)

From P. Fessia

Layouts



Aperture ~twice the LHC baseline (70 mm to 150 mm), but more compact triplet layout thanks to Nb₃Sn and superconductive D1


Implications & Assumptions (e-cloud)

- Control of the blow-up due to ecloud via scrubbing at 450 GeV
 - Emittance blow-up occurs when electron cloud activity in the dipoles
 - SEY reduction in the dipoles at 450 GeV with 25 ns scrubbing run. Need margin for small emittance/shorter bunch → doublet beams being considered and LS1 interventions to increase cryo-margin at injection (SAM and Sector 34)

- Expect heat load in the quadrupoles due to the lower threshold SEY → cryo upgrade (c/o P. Fessia)
- HL-LHC triplets/D1 will have e-cloud countermeasures implemented (aC coatings and possibly clearing electrodes)

Total load per sector 4.6-20K range

Conclusions

From P. Fessia

- PIC actions
 - Concern practically all the sectors of the machine
 - The are spread between the 1st long technical stop after LS1 and LS3
- Interaction region interventions in IP 1 and 5 provide safe operation for

2025->2035 years and the required luminosity capacity (See G. Arduini talk)

- Collimation interventions push down the whole machine impedance providing more robust collimators and ensure safe ion run in IP2. Remark: the collimator lifetime is being analysed in this moment. Possible intervention on secondaries could be necessary to provide reliable exploitation after LS2
- Beam diagnostic interventions provide the necessary diagnostic capacity, with hardware compatible with the higher radiation dose
- Sc links provide a solution to radiation electronic issues for the Power converters, but also contribute in reducing collective dose, interventions time and reduce risk of SEE
- Cryoplant at point 4 provides flexibility in the management of the RF interventions and eliminate the 1st machine bottleneck in term of cooling capacity. All cryo installation have to be performed with a long term view from the installation/integration perspective (foresee for future needs)
- High radiation dose point call for radiation management and possible reconfiguration to provide the best as possible reliability and access conditions. Radiation tolerant electronic development (including R&D and testing) will affect several equipment groups (costs, resources)

10/31/2013 Document reference 12

HL-LHC Assumptions for US1:

From. O. Bruning

- -New triplet magnets (PIC) -> smaller than nominal β^* reach
- No new magnets or movements in the matching section
- No Crab Cavities
- Long Range Beam-Beam wire compensators at a position of ca. 10 sigma resulting in a required beam separation of 10 sigma (question was raised why we assume LRBB wires for US1 but not for US2 and if compatible with CS).
- -160 days of operation for physics production; -Beam energy = 6.5 TeV
- -25ns scheme using BCMS -> 2593 bunches
- -5% intensity loss from SPS extraction to LHC collisions
- -Cases 1: 20% emittance blow-up from SPS extraction to LHC collisions (the question was raised if this is a realistic assumption for small emittance beams)
- Other Cases: emittances between 1.8 and 2 micrometer (between 50% and 75% blow up from SPS extraction to LHC collisions wrt LIU expectations)

Summary of LIU Performance: [Simone Gilardoni]

	LHC	collision	SPS 6	extraction
Classical Scheme	Int/b E	Emitt* (µrad) I	Int/b	Emitt* (µrad)
US1 Baseline	1.50E+11	1.5	1.58E+11	1.25
US1 low emit.	1.20E+11	1	1.26E+11	0.83
US1 LIU SPS LLRF 200 MHz upgrade	1.38E+11	1.64	1.45E+11	1.37
US1 LIU SPS 200 MHz full upgrade	1.90E+11	2.26	2.00E+11	1.88
BCMS				
US1 Baseline with BCMS	1.50E+11	1.5	1.58E+11	1.25
US1 low emittance with BCMS	1.20E+11	1	1.26E+11	0.83
US1 LIU SPS LLRF 200 MHz upgrade	1.38E+11	1.09	1.45E+11	0.91
US1 LIU SPS 200 MHz full upgrade	1.90E+11	1.64	2.00E+11	1.37

- BCBMS → 2592 bunches for trains of 48 bunches
 following presentation by John Jowett @ LIU Technical meeting
 and Christian Carli's Chamonix 2011 presentation
- Last lines refer to SPS upgrade with RF Power upgrade [ca. 25MCHF]
- → Following analysis based on evaluation of non-crossed out cases and with variations of the beam emittance From. O.

Bruning

Large β & SPS RF Power Upgrade: Case 3b

- -US1 flat beams; SPS with new LLRF system and withthe RF power upgrade
- -N at collisions = 1.9 10¹¹ppb
- -n = 2508 colliding pairs in IR1 and IR5 (revised BCMS filling scheme)
- -normalized emittance = 2.80 micrometer (> 70% blow-up wrt SPS extraction)
- -flat beams with beta* = 0.5m / 0.25m
- -beam separation of 10sigma -> crossing angle of 310 microrad
- -IBS growth rates of ca. 22h horizontally and 25h longitudinally (scaled)
- -Peak Luminosity = 5 10^34 cm^-2s^-1
- -No Leveling time; Lumi decay time = 6 h; Turnaround time = 3 hours
- -Total fill length (leveling + decay + turnaround) = 9h
- -Integrated Lumi per fill =0.71 fb⁻¹; Lumi per year for perfect operation = 304fb⁻¹
- Required efficiency for achieving 170fb^-1 per year = 56%

==> Case 3b could reach the US1 goals but is challenging in terms of efficiency.

From. O. Bruning

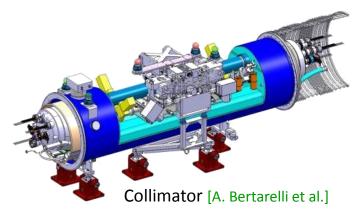
+MS Upgrade for US1: Case 4

- -US1 flat beams; SPS with new LLRF system and with the RF power upgrade
- -N at collisions = $1.9 \ 10^{11}$ ppb
- -n = 2508 colliding pairs in IR1 and IR5 (revised BCMS filling scheme)
- -normalized emittance = 2.65 micrometer (> 70% blow-up wrt SPS extraction)
- -flat beams with beta* = 0.4m / 0.1m
- -beam separation of 10sigma -> crossing angle of 310 microrad
- -IBS growth rates of ca. 22h horizontally and 25h longitudinally (scaled)
- -Peak Luminosity = $8 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- -Leveling time = 2.9 h; Lumi decay time = 4 h; Turnaround time = 3 hours
- -Total fill length (leveling + decay + turnaround) = 9.9h
- -Integrated Lumi per fill =1.06 fb⁻¹; Lumi per year for perfect operation = 413fb⁻¹
- -Required efficiency for achieving 170fb^-1 per year = 41%

==> Case 4 could easily reach the US1 goals and is OK from the IBS point of view.

20% L-int increase wrt Case 3b (requiring essentially TAS and TAN upgrades)

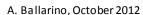
From. O. Bruning

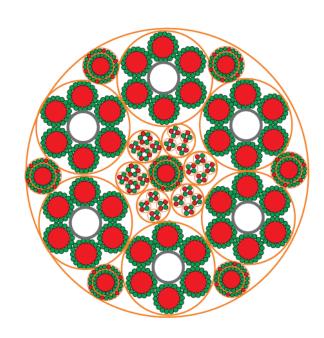

From E. Todesco

 The plan for collimation in the next years is strongly dependent on the first results of operation at 7 TeV

[S. Redaelli]

- So it is difficult to make a guess, but we must have a baseline
- With these caveat, for US1 we foresee installation of additional collimators in IR7 – IR1 – IR5
 - 11 T technology used to make space
 - 10 units needed: 20 magnets (5.5 m long) plus 10 collimators
 - Same hardware used in IP2 for the PIC − cost ~65 MChf


From E. Todesco

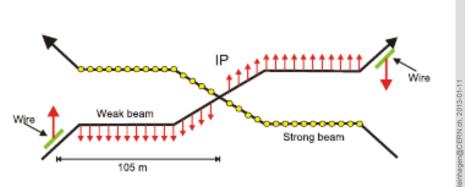

 Aim: move power converters of matching sections from tunnel to surface

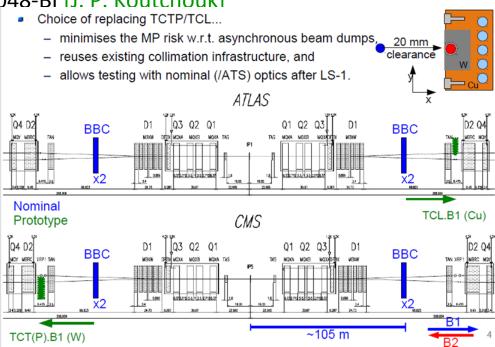
Superconducting Links at P1 and P5 Matching Sections and Arc

- Two Superconducting Links per point from surface to underground areas – for powering of MSs
- Two Superconducting Links per point from surface to underground areas – for powering of arcs
- ➤ Need for civil engineering to be verified
- R&D Combined with development of system for Triplets
 → Test of full system (DFB and SC Link) in 2015
- > Installation in LHC during LS3 (2022) or LS2 (2018)
- Procurement of series to be started by end 2015 for integration during LS2
- Synergy with triplet sc link
- Technology: possibly MgB₂

Cost: ~20 MChf

Cross-section of link for triplets
[A. Ballarino]


BEAM BEAM LONG RANGE WIRE


From E. Todesco

COMPENSATOR

Idea: use a current to cancel the longe range beam-beam effect and close crossing angle

Initial proposal based on CERN-SL-2001-048-BI [J. P. Koutchouk]

- Experimented on RHIC and SPS, but not yet in a collider
 - In RHIC: you can spoil a beam with this
 - In SPS: a wire can compensate another wire
- A proof of principle in the LHC is needed