LHC Injectors Upgrade # PICs in the injectors – what are we talking about? K. Hanke thanks to S. Gilardoni, B. Goddard, B. Mikulec and the LIU working group members ### **Scope and Assumptions** - PIC definition - PIC items per project - risk of not doing the consolidation - consequences of doing the consolidation - cost - time lines ### assumptions for this talk: - Linac4 and the modifications to the PSB injection region are not covered in this presentation - ions are not considered (dedicated session) ### **CONSOLIDATION:** Partial or complete replacement of a system to be performed in order to maintain the present level of performance/availability (from RLIUP glossary) example: PSB multipole power converters ### **UPGRADE:** Replacement or addition of a system to improve the performance, which would otherwise not be necessary example: H- injection, PS injection for 2 GeV ### PERFORMANCE IMPROVING CONSOLIDATION: Replacement or upgrade of a system justified by consolidation but with the goal of improving performance example: change an ageing PSB power supply by a new one which is more reliable and which can also go up to 2 GeV ## **PICs in the Upgrade Scheme** # LIU-PSB: List of PICs and Borderline Cases | PIC | comments | |--|---| | Magnets | a number of BI quadrupoles pure consolidation items partial replacement of transfer line magnets → consolidation + upgrade modifications of main magnets: upgrade | | LL RF | o new digital LL RF, new TFB | | HL RF | o replacement of present C02 and C04 by Finemet | | Power Converters (rings, extraction, transfer) | replace MPS (borderline case) replace power converters in extraction and transfer which cannot operate at 2 GeV | | Beam Instrumentation | new wire scanners new orbit new BLM system (partly consolidation, but additional BLMs for upgrade) | | Main Dump | o new PSB dump (completed LS1) | | Extraction & Transfer | new extraction elements new recombination and transfer line elements (borderline cases) | | Cooling & Ventilation | o complete renovation of the system, cooling for new MPS, dump, etc. | | Transport & Handling | renovate handling equipment to be operational for upgrade work studies and work for removal of old dump and other equipment | # LIU-PSB: Risks | PIC | if not done | if done | |--|---|---| | Magnets | some magnets are urgent consolidation items, risk
of failure, unsatisfactory spare situation (BT.BHZ10) | o delicate transport & handling | | LL RF | old system obsolete and inappropriate for Linac4
and new HL RF | o re-commissioning needed | | HL RF | old system obsolete and will not work with Linac4
intensities and 2 GeV | system cannot be fully tested before decision (space)technical issues, impedance | | Power Converters
(rings, extraction,
transfer) | ageing equipment MPS would need consolidation if it were to continue (MPS and SCV) transfer line power converters consolidation items | commissioning of new MPS required LS2 duration | | Beam
Instrumentation | insufficient machine protectioninsufficient emittance diagnostics | new systems need to be
commissioned | | Main Dump | o old dump inappropriate | o none identified | | Extraction & Transfer | reliability and spare situation issue with some equipment | issue with rise time of recombination kickers | | Cooling & Ventilation | present system obsolete (was CONS item); to be
renovated taking into account new requirements;
closely related to RP issues | o potential time driver for LS2 | | Transport & Handling | o equipment not ready, delays | o some critical issues under study | 1) ### **LIU-PSB: Cost** | PIC | total cost [kCHF] | consolidation / | performance [%] | | |--|-------------------|-----------------|-----------------|--------------| | Magnets | 2696 | 10 | 90 | | | LL RF | 1566 | 100 | |] | | HL RF | 11732 | 100 | |] | | Power Converters (rings, extraction, transfer) 1 | 18451 | 35 | 65 | | | Beam Instrumentation ² | 2954 | | 100 | | | Main Dump (compl. LS1) | 460 | 74 | 26 | \checkmark | | Extraction & Transfer | 3515 | 15 | 85 | | | Cooling & Ventilation | 6994 | 65 | 35 | | | Transport & Handling | 644 t.b.c. | 60 | 40 | | 49012 51 / 49 - MPS consolidation foreseen before LIU: 3 MCHF - total cost for the 2 GeV MPS including building: 15 MCHF → large part "performance" - power converters transfer line: total **4 MCHF**, of which **3.3 MCHF** pure consolidation - 2) budgeted in LIU, but is a MUST in all possible scenarios ### From the Feasibility Study (EDMS 1082646) ### 20.2.17 BUDGET ESTIMATE SUMMARY | | all units kCHF | | | |------------------------------------|-------------------------------------|-------------------------------|-----------------------------------| | | all beams
at 2 GeV
(baseline) | only LHC
beams
at 2 GeV | from con-
solidation
budget | | Beam Dynamics | 50 | 50 | 0 | | Magnets | 3445 | 3595 | -210 | | Magnetic Measurements | 111 | 111 | 0 | | RF | 14320 | 14320 | -14320 | | Beam Intercepting Devices | 700 | 700 | -700 | | Power Converters | 20850 | 21100 | -6630 | | Vacuum system | 100 | 100 | 0 | | Beam Instrumentation | 67 | 67 | -10 | | Commissioning and Operation | 50 | 50 | 0 | | Extraction, Transfer, PS Injection | 5763 | 5763 | -550 | | Controls | 116 | 116 | 0 | | Electrical Systems | 1700 | 1700 | 0 | | Cooling and Ventilation | 5500 | 5500 | -4500 | | Radiological Protection | 0 | 0 | 0 | | Transport and Handling | 680 | 680 | -400 | | Survey | 50 | 50 | 0 | | Total | 53502 | 53902 | 27320 | | covered by consolidation | 27320 | | | | after correction for consolidation | 26182 | 26582 | \ | | | | | \ | total upgrade part consolidation part ### **LIU-PSB: Time Lines** | PIC | total time [m] | split (y/n) | minimum single block [m] | earliest start date | |--|-----------------------------------|-------------|--------------------------|------------------------| | Magnets | 4-5 | У | 3 | partly before LS2 | | LL RF | 7 | n | 7 | LS2
dig .compl. LS1 | | HL RF | 10.5 | n | 10.5 | LS2 | | Power Converters (rings, extraction, transfer) | MPS: 2×1+3
TL: 12 | y
n | 12 | LS2 | | Beam Instrumentation | 9 | У | 3.5 | LS1 | | Main Dump | | n | | LS1 (done) | | Extraction & Transfer | 7 | n | 7 | LS2 | | Cooling & Ventilation | 7 excluding other activities + 12 | n | 7 + 12 | | | Transport & Handling | | У | | after LS1 | ## **LIU-PS: List of PICs and Borderline Cases** | PIC | comments | |----------------------|---| | Beam Instrumentation | new wire scannersnew BLMs | | Magnets | new vertical correctorsnew normal & skew quadrupoles | | Transverse Damper | new power convertersecond kicker | | Longitudinal Damper | o Finemet cavity to damp longitudinal and coupled-bunch instablilities | | Radiation Shielding | o increase shielding on top of extr. septum and route Goward | | Power Converters | low energy quadrupoles orbit correctors skew quadrupoles/sextupoles 40/80 MHz cavity power amplifier | | Beam dumps | o new beam dumps | | HL RF | o renovation of 10 MHz system | | LL RF | upgrade feedback amplifiers new 1-turn delay feedbacks for 10,40 and 80 MHz systems new digital beam control | ### LIU-PS: Risks | PIC | if not done | if done | |-------------------------|---|--| | Beam
Instrumentation | limited emittance diagnosticsold BLM system obsolete | o need to recommission | | Magnets | skew quadrupoles: low reliability due to large
thermal heating. Head-tail instability today cured by
linear couling not available | o need to recommission | | Transverse
Damper | o limited DC power and bandwidth | o need to recommission | | Longitudinal
Damper | limited bunch intensity incompatible with HL-LHC parameters | o none identified | | Radiation
Shielding | o RP issues | o none | | Power Converters | increased number of failures due to large RMS
current and old thermal protections. | need to recommission | | Beam Dumps | present mechanics prone to vacuum leaks.precision on triggering. | o need to recommission | | HL RF | limited longitudinal beam stability, degradation of
beam quality | o need to recommission | | LL RF | transient beam loading issues at high intensity degraded beam quality & stability, bunch-to-bunch spread drift, break-down, insufficient spares | o need to recommission | # LIU-PS: Cost | PIC | total cost [kCHF] | consolidation /p | erformance [%] | |-----------------------------------|-------------------|------------------|----------------| | Beam Instrumentation ¹ | 1062 | 34 | 66 | | Magnets | 1000 | 48 | 52 | | Transverse Damper | 350 | 50 | 50 | | Longitudinal Damper ² | 1500 | 100 | | | Radiation Shielding | 3150 | 100 | | | Power Converters | 3065 | 42 | 58 | | Beam Dumps | 850 | 30 | 70 | | HL RF | 4200 | 10 | 90 | | LL RF | 900 | 63 | 37 | 16077 42 / 58 - 1) part of it is only required for upgrade (IPM and fast BLMs) - 2) considered a MUST in all scenarios ### **LIU-PS: Time Lines** | PIC | total time [m] | split (y/n) | minimum single block [m] | earliest start date | |----------------------|----------------|-------------|--------------------------|---------------------| | Beam Instrumentation | 5 | У | 1 | LS2 | | Magnets | 12 | У | | LS2 | | Transverse Damper | not critical | n | | ongoing | | Longitudinal Damper | | | | done LS1 | | Radiation Shielding | | | | done LS1 | | Power Converters | 3 | n | 3 | end 2015 | | Beam Dumps | 1 | У | 0.5 | LS2 | | HL RF | 3 | n | | LS2 | | LL RF | parallel | У | | LS2 | ## LIU-SPS: List of PICs and Borderline Cases (1) | PIC | comments | | | |----------------------------------|--|--|--| | Machine Interlocks (WIC) | replace obsolete electromechanical relays with PLC solution compatible with other SPS TL and CERN systems better reliability and maintenance, standard supervision and diagnostics | | | | 800 MHz Upgrade | replacement of analogue control with digital new 1-turn feedback and feed-forward (essential for beam control) in low level consolidation of existing power system and doubling available power (needed to match 200 MHz upgrade) | | | | LSS1 Vacuum Sectorisation | addition of sector valves around TIDVG and MKP/D, to reduce personnel dose,
protect sensitive equipment and reduce pump-down times | | | | Scraper Improvement | o construction of additional spares and improvements to local shielding | | | | Beam Instrumentation | replacement of obsolete MOPOS electronics, plus new fibre backbone replacement of obsolete BLM electronics, using MOPOS fibres replacement of wire scanners with new devices improvement of BGI, BSRT, IMM and Head-Tail monitors | | | | Transverse Damper
Improvement | improvement of low-level control addition of dedicated pickups consolidation of damper cables | | | # LIU-SPS: List of PICs and Borderline Cases (2) | PIC | comments | |-------------------------------------|--| | Arc Vacuum Sectorisation | reduce length of arc sectors by factor 2, to reduce pumping times improved protection against loss of ecloud scrubbing | | New TIDVG Core | replace present TIDVG core with improved version robust against present and future LHC beams | | Other Kicker Impedance
Reduction | addition of transition pieces in MKD kickersserigraphy of MKQ kickers | | ZS Improvements | improvement of pumping impedance reduction improvement of ion trap connections short-circuiting of anodes | | 200 MHz RF Consolidation | consolidation of drivers, cavity controllers, HV power supplies, CV and power couplers low-level improvement | # LIU-SPS: Risks (1) | PIC | if not done | if done | |-------------------------------------|---|---| | Machine
Interlocks (WIC) | possible reliability issue, extra maintenance costs,
extra resources for keeping obsolete system
operational | o none identified | | 800 MHz Upgrade | beam instabilities at higher intensity insufficient 800 MHz voltage extra cost, resources and reliability risk to keep obsolete low-level running | readiness for SPS operation end2014 | | LSS1 Vacuum
Sectorisation | increased risk of venting and damage to sensitive or very radioactive equipment increased radiation dose to personnel | o none identified | | Scraper
Improvement | insufficient spares reduced LHC performance (unable to clean
transverse tails in SPS) | o none identified | | Beam
Instrumentation | extra cost, resources and reliability risk to keep obsolete systems running no reliable transverse beam size measurement insufficient resolution and no bunch-by-bunch capability for LHC beams | none identified for MOPOS and
BLM (deployment in parallel with
existing system) HOM heating for new WS | | Transverse
Damper
Improvement | extra cost, resources and reliability risk to keep obsolete systems running not able to properly damp Pb ion beams | o none identified | # LIU-SPS: Risks (2) | PIC | if not done | if done | |--|---|---| | Arc Vacuum Sectorisation | o longer scrubbing times for ecloud | o none identified | | New TIDVG Core | damage to TIDVG for repeated dumping of intense/bright LHC beams long (months) recovery to condition with beam | long beam conditioning time of
newly installed dump | | Other Kicker
Impedance
Reduction | intensity limitation with high duty cycle beams due to other kickers limitation of scrubbing beam time | o none identified | | ZS Improvements | ZS sparking limitations on other beams longer switch to LHC cycle | o none identified | | 200 MHz RF
Consolidation | extra cost, resources and reliability risk to keep obsolete systems running insufficiently performing beam control | o none identified | # **LIU-SPS: Cost** | PIC | total cost [kCHF] | consolidation /performance | | | |-------------------------------------|-------------------|----------------------------|--|----| | Machine Interlocks (WIC) | 600 | 100 | | | | 800 MHz Upgrade | | 50 | | 50 | | LSS1 Vacuum Sectorisation | 800 | 25 7 5 | | 75 | | Scraper Improvement | 200 | 100 | | | | Beam Instrumentation | 5600 | 25 | | 75 | | Transverse Damper
Improvement | 1300 | 50 | | 50 | | Arc Vacuum Sectorisation | 2500 | 25 | | 75 | | New TIDVG Core | 2900 | 50 50 | | 50 | | Other Kicker Impedance
Reduction | 4100 | 25 | | 75 | | ZS Improvements | 1000 | 50 | | 50 | | 200 MHz RF Consolidation | 3700 | 25 | | 75 | CERN ### **LIU-SPS: Time Lines** | PIC | total time [m] | split (y/n) | minimum single block [m] | earliest start date | |-------------------------------------|----------------|-------------|--------------------------|---------------------| | Machine Interlocks (WIC) | 6 | n/a | n/a | done LS1 | | 800 MHz Upgrade | 12 | n/a | n/a | done LS1 | | LSS1 Vacuum
Sectorisation | 6 | n/a | n/a | done LS1 | | Scraper Improvement | 0 | | | ~ | | Beam Instrumentation | 24 | У | 3 | LS1 | | Transverse Damper
Improvement | 9 | у | 6 | LS1 | | Arc Vacuum Sectorisation | 6 | У | 3 | 2015/16 | | New TIDVG Core | 3 | n | 3 | LS2 | | Other Kicker
Impedance Reduction | 3 | У | 2 | 2015/16 | | ZS Improvements | 3 | У | 2 | 2015/16 | | 200 MHz RF
Consolidation | 6 | У | 3 | 2016/17 | ### **Summary & Conclusions (1)** ### time drivers and smallest increment LIU-PSB: smallest increment 12 m → LIU time drivers CV, RF, cabling (combined) **LIU-PS**: smallest increment 3 m can be done during intermediate shutdowns not all details known, but not considered critical LIU-SPS: smallest increment 6 m can be done during intermediate shutdowns all time estimates depend strongly on available resources (manpower) ### cost of PICs [kCHF] **LIU-PSB:** 50'000 (essentially LIU-PSB budget¹ without the Linac4 part) **LIU-PS:** 16'000 (80% of total budget 20'000²) **LIU-SPS:** 23'000 (30% of total budget 77'000) 1: total budget 60.8 MCHF 2: baseline 20 MCHF, with all options 32 MCHF ## **Summary & Conclusions (2)** - classification of what is a PIC is often ambiguous (many borderline cases) - accounting of what is the "PI" and what is the "C" in a PIC is often ambiguous - however it is interesting to notice that a 50/50 split seems to be the average across all machines - for LIU-PSB PICs cover almost the entire budget, for the PS 80% and for the SPS 30% - several items (e.g. beam instrumentation) need to be done in all possible scenarios in order not compromise performance over the coming years - PICs are important and must be fully implemented in the injectors regardless of which upgrade scenario is chosen # LHC Injectors Upgrade ### THANK YOU FOR YOUR ATTENTION!