

PICs: what do we gain in beam performance?

G. Arduini

with input from: D. Banfi, J. Barranco, O. Brüning, R. De Maria, O. Dominguez, S. Fartoukh, P. Fessia, S. Gilardoni, B. Gorini, G. Iadarola, V. Kain, M. Kuhn, E. Métral, N. Mounet, T. Pieloni, S. Redaelli, L. Rossi, G. Rumolo, R. Tomàs, A. Valishev, J. Wenninger and in general LIU and HL-LHC teams

Outline

- Beam parameters:
 - Injectors
 - LHC
- Beam Parameter Evolution during the fill
- Yearly performance
- Key questions and studies
- Conclusions

Beam Parameters

- 5% intensity loss assumed during the cycle
 - → Average lifetime along the cycle before collision of ~22 hours
 - → But minimum lifetime > 0.2 hours (assuming tight collimator settings) limited by power deposited on the collimators
- Emittance blow-up of 20% from SPS extraction to LHC collision when compatible with inevitable sources of blow-up → IBS
 - Margin of ~10-15 % on the average emittance blow-up on top of IBS
 - IBS calculations including injection/ramp and squeeze assuming controlledlongitudinal blow-up to keep bunch length at 10 cm up to flat-top

	SPS Extraction		LHC collision (min. value – IBS)	LHC collision		
	Bunch population [10 ¹¹]	ε _η (Η/ \) [μm]	ε _n (H/V) [μm]	Bunch population [10 ¹¹]	ε _{n coll} (H/V) [μm]	Blow-up [%]
BCMS	1.45 REED	1.45/1.45	1.74/1.45	1.38	1.85/1.85	27
Standard	145	1.85/1.85	2.09/1.85	1.38	2.25/2.25	21

Beam parameters (Filling schemes - 25 ns)

Filling scheme	Total	IP1-5	IP2	IP8
BCMS: 48b 6 PS inj, 12 SPS inj	2604	2592	2288	2396
Standard: 72b 4 PS inj, 12 SPS inj	2748	2736	2452	2524

B. Gorini

Implications & Assumptions (e-cloud)

- Control of the blow-up due to ecloud via scrubbing at 450 GeV
 - Emittance blow-up occurs when electron cloud activity in the dipoles
 - SEY reduction in the dipoles at 450
 GeV with 25 ns scrubbing run. Need
 margin for small emittance/shorter
 bunch → doublet beams being
 considered and LS1 interventions to
 increase cryo-margin at injection
 (SAM and Sector 34)

- Expect heat load in the quadrupoles due to the lower threshold SEY → cryo upgrade (c/o P. Fessia)
- HL-LHC triplets/D1 will have e-cloud countermeasures implemented (aC coatings and possibly clearing electrodes)

Implications & Assumptions (impedance)

- Collimators are the largest source of impedance in the LHC.
- Possible limitation in minimum opening and β* reach
- Interplay between impedance and beam-beam possible origin of the instabilities observed in 2012 (not fully understood yet)
- Limited margin for all the scenarios based on extrapolations from 2012 (with positive octupole polarity)
- Impedance reduction with metallic collimators (Mo-C) to provide safe margin

Implications & Assumptions

- Control of the additive sources of blow-up (injection errors, noise, etc.)
 - Contributions at injection and first part of the ramp in H-plane consistent with IBS
- Asymmetry between the two beams and planes
- Not yet managed in reducing observed blow-up
- Assume progress in the understanding and solutions. Had a similar process in the injectors.

V. Kain, M. Kuhn

Optics

- Minimum β^* in IR1 and 5 limited by aperture in the matching section
- TAN,Q5,Q4,D2 become aperture bottlenecks → need to install new TCTs in IR1-5 for D2-Q5 for protection
- Two flat optics considered with maximum β^* ratio = 2 (S. Fartoukh):
 - β^*_{xing} = 40 cm / β^*_{sep} = 20 cm
 - $\beta_{xing}^* = 50 \text{ cm} / \beta_{sep}^* = 25 \text{ cm}$
- The latter providing more margin in aperture and possibly better behaved in the absence of MS in Q10
- Flat beams likely require larger beambeam separations as compared to round.
 Larger β* ratios (>2) might imply larger B-B
 High separations → being further investigated

Peak luminosity (Max= $2.6x10^{34}$ – Min= $1.2x10^{34}$) at constant beam-beam separation (14 σ)

Peak Performance at 6.5 TeV

Momentum [TeV/c]	6.5
Bunch population in collision [10 ¹¹ p]	1.38
Total RF Voltage [MV]	16
$\epsilon_{\rm L}^*$ [eV.s] at start of fill	3.6
Bunch length (4 σ)[ns]/ (r.m.s.) [cm]	1.33/10
Beam-beam separation [σ]	14

	ε* _{n coll} [μm]	# Coll. Bunches IP1,5	Xing angle [µrad]	BB separation [σ]	L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]
BCMS - 40/20	1.85	2592	364	14	2.9
Standard - 40/20	2.25	2736	400	14	2.5
BCMS - 50/25	1.85	2592	326	14	2.7
Standard – 50/25	2.25	2736	360	14	2.3

Performance estimate during collisions

- Evolution of beam parameters based on:
 - Burn-off
 - Total cross-section: 100-110 mb (assumed worst case 110 mb for E_{cm}=13-14 TeV)
- Emittance evolution (no coupling assumed) including:
 - IBS
 - Radiation damping
- Additional (unknown) sources of loss/blow-up from comparison with 2012 fills with similar bunch populations with no sign of instability
 - Intensity loss ($\tau \sim 200 \text{ hours}$)
 - Vertical emittance blow-up ($\tau \sim 40$ hours)
- Finite difference method (5 mins step)

Comparison with 2012 (Fill 2728)

Comparison with 2012 (Fill 2728)

Integrated luminosity targets

- Assumptions:
 - Luminosity in 2015=30 fb⁻¹
 - 310 fb⁻¹ by the end of 2021. (M. Lamont 6th HL-LHC Coordination Group meeting 26/07/13).

	PIC	US1	US2
Integrated luminosity by end 2021/ end 2035	310/1000	310/2000	310/3000
Number of years of operation after 2021	10	10	10
Target luminosity/year	70	170	270

• Performance efficiency (η) required to achieve the target yearly integrated luminosity L_{target} is evaluated for every scenario. This is the percentage of scheduled physics time spent for successful fills (including minimum turnaround)

successful physics fills/year
$$\eta = \underbrace{\frac{L_{target}}{L_{fill}}}_{T_{around} _{min}} + T_{fill} \times 100$$

- L_{fill} = luminosity integrated during one fill of duration T_{fill}
- T_{around-min} = minimum turn-around time
- T_{spt}=time spent in physics for luminosity production
- The performance efficiency for T_{fill} =6 h (η_{6h}) and for the optimum fill length based on the luminosity evolution and on the considered turn-around time (η_{opt}) have been evaluated for every scenario

• Physics efficiency (ϕ) is evaluated for every scenario:

$$\phi = \frac{L_{target}}{L_{fill}} \frac{T_{fill}}{T_{spt}} \times 100$$

- This is the percentage of time spent in physics. Particularly important for ALICE and LHCb constantly running in levelling mode
- The physics efficiency for T_{fill} =6 h (ϕ_{6h}) and for the optimum fill length based on the luminosity evolution and on the considered turn-around time (ϕ_{opt}) have been evaluated for every scenario

2012 data	
Scheduled Physics Time for p-p luminosity production/year (T _{spt}) [days]	190.5
Minimum Turn-Around Time (T _{around-min}) [h]	2.2
Average Fill length T _{fill} [h]	6.1
Integrated Luminosity (L _{int}) [fb ⁻¹]	23.3
Physics efficiency φ [%]	36
Fills that made it to physics (N _{fill})	295
Performance efficiency $\eta = N_{fill} * (T_{around-min} + T_{fill}) / T_{spt} * 100 [%]$	53.5

HL-LHC Assumptions	
Scheduled Physics Time for p-p luminosity production/year (T _{phys}) [days]	160
Minimum Turn-Around Time [h]	3
Average Fill length [h]	6 or optimum
Performance Efficiency – goal [%]	50
Pile-up limit [events/crossing]	140
Pile-up Density limit – baseline (stretched) [events/mm/crossing]	1.3 (0.7)

PIC @ 6.5 TeV (Pile-up limit at 140)

	Lev. time [h]	Opt. Fill length	η _{6h} /η _{opt} [%]	φ _{6h} /φ _{opt} [%]	Int. Lumi for η=50% for 6h	Max. Mean Pile-up density/Pile-up
		2012	Goal	2012	/opt. fill length	[ev./mm]/[ev./xing]
		6h	<50%	36%	Goal > 70 fb ⁻¹	<1.3/<140
BCMS - 40/20	-	6.5	37/37	25/26	93/94	0.97/84
Standard - 40/20	-	7.3	40/40	27/28	87/88	0.79/69
BCMS - 50/25	-	6.8	39/39	26/27	89/89	0.77/78
Standard – 50/25	-	7.6	43/42	28/30	82/83	0.63/64

- All the configurations allow to achieve the target integrated luminosity per year with performance efficiency and physics efficiency compatible with 2012 values
- Fill lengths are comparable (although slightly longer) to 2012 average → Importance of consolidation to increase reliability
- 50/25 optics provides reduced pile-up density for small reduction of the integrated luminosity and it relaxes constraints on aperture/optics
- Standard filling scheme provides slightly lower performance but it is more tolerant to additive sources of blow-up

PIC @ 6.5 TeV (Pile-up limit at 45)

	Lev. time [h]	Opt. Fill length [h]	η _{6h} /η _{opt} [%]	φ _{6h} /φ _{opt} [%]	Int. Lumi for η=50% for 6h /opt. fill length [fb ⁻¹ /y]	Max. Avg. Pile-up density/Pile-up [ev./mm]/[ev./xing]
BCMS - 40/20	6.8	10.2	49/45	33/34	71/79	0.53/45
Standard - 40/20	5.3	9.6	47/44	31/33	75/80	0.53/45
BCMS - 50/25	6.2	9.8	49/45	33/35	71/77	0.45/45
Standard – 50/25	4.5	9.2	47/45	32/34	74/78	0.46/45

- With a reduced pile-up limit the target luminosity is still achievable but with reduced margin and longer fills (by >50 %)
- BCMS and standard filling schemes provide the same performance with a slight advantage for the standard scheme due to larger number of bunches and therefore larger levelling luminosity for the same pile-up limit.

- Assumed distribution (delta at T_{fill} see J. Wenninger) is likely optimistic (10-20%) but:
 - Improvement in reliability could be expected as a result of PICs and in particular:
 - SC links in 1/5/7 → R2E
 - Cryogenics upgrade in point 4 and additional IR1-5 cryoplants providing more margin for operation

Key questions and studies required in Run 2

- Confirmation of the feasibility of scrubbing the dipoles down to SEY=1.3-1.4 possibly with dedicated beams
- Full understanding of the stability limits for single and twobeams
- Study of the beam-beam effects with flat beams and large tune spread. Round beams with 30/30 cm and 12 σ separation as a back-up → same pile-up density for smaller integrated luminosity (-12 %).
- Understanding and Control of the additive sources of blow-up
- Confirmation of the feasibility of β^* -levelling as a possible solution for IP8

Conclusions

- The luminosity target can be reached with 40/20 optics
 - Comfortably, provided pile-up limit is increased above present values
- BCMS production scheme gives slightly higher performance as compared to Standard filling scheme although the latter is less sensitive to additive sources of emittance blow-up
- 50/25 optics provides margin in aperture and offers a reduction of the pile-up density below 0.7 events/mm for a small reduction of the integrated luminosity but still within the target
- Key questions and studies required in Run 2 have been sketched

Main Hardware Modifications (c/o P. Fessia)

PIC

- New TAS, New IT, D1 with 150 mm aperture and correctors
- New collimators with buttons:
 - new materials (Mo-C) for robustness and impedance (should be required already at this stage)
 - new TCTs in IR1-5 for D2-Q5 for protection
- SC links in IR1-5, QRL
- New powering with SC links at P7 (RR)
- New Cryoplant P4 for SCRF
- Cryoplants in P1, 5

Peak Performance at 7 TeV

Momentum [TeV/c]	7
Bunch population in collision [10 ¹¹ p]	1.38
Total RF Voltage	16
$\epsilon_{\rm L}^*$ [eV.s] at start of fill	3.8
Bunch length (4 σ)[ns]/ (r.m.s.) [cm]	1.33/10
Beam-beam separation $[\sigma]$	14

	ε* _{n coll} [μm]	# Coll. Bunches IP1,5	Xing angle [µrad]	L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]
BCMS - 40/20	1.85	2592	351	3.1
Standard - 40/20	2.25	2736	387	2.7
BCMS - 50/25	1.85	2592	315	2.9
Standard – 50/25	2.25	2736	347	2.5

PIC @ 7 TeV (Pile-up limit at 140)

"Visible" cross-section IP1-5 [mb] for pile-up estimation	85
"Visible" cross-section IP8 [mb] for pile-up estimation	75
Pile-up limit IP1	140
Pile-up limit IP5	140
Pile-up limit IP8	4.5
Luminosity limit IP2 [10 ³⁴ cm ⁻² s ⁻¹]	0.002

	Lev. time [h]	Opt. Fill length [h]	η _{6h} /η _{opt} [%]	φ _{6h} /φ _{opt} [%]	Int. Lumi for η=50% for 6h /opt. fill length [fb ⁻¹ /y]	Max. Avg. Pile-up density/Pile-up [ev./mm]/[ev./xing]
BCMS - 40/20	-	6.6	34/34	23/24	102/102	1.0/90
Standard - 40/20	-	7.4	37/37	25/26	95/95	0.85/74
BCMS - 50/25	-	6.8	36/36	24/25	97/97	0.83/84
Standard – 50/25	-	7.6	39/39	26/28	90/91	0.68/69

50/25 optics reduced pile-up density for small reduction of the integrated

Break-down of Turn-Around (HL-LHC)

Phase	Duration [min]		
Ramp down/pre-cycle	60		
Pre-injection checks and preparation	15		
Checks with set-up beam	15		
Nominal injection sequence	20 (=2*12 injections*48.8s)		
Ramp preparation	5		
Ramp	25		
Squeeze/Adjust	40		
Total	180		

M. Lamont

Parameter evolution at 6.5 TeV (model)

PIC @ 6.5 TeV (Pile-up limit at 140) - 30/30

	ε* _{n coll} [μm]	# Coll. Bunches IP1,5	Xing angle [µrad]	BB separation [σ]	L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]
BCMS - 30/30	1.85	2592	360	12	2.5
Standard - 30/30	2.25	2736	396	12	2.1

	Lev. time [h]	Opt. Fill length [h]	η _{6h} /η _{opt} [%]	φ _{6h} /φ _{opt} [%]	Int. Lumi for η=50% for 6h /opt. fill length [fb ⁻¹ /y]	Max. Avg. Pile-up density/Pile-up [ev./mm]/[ev./xing]
BCMS - 30/30	-	7	41.7/41.5	27.8/29.1	83.8/84.3	0.9/72
Standard - 30/30	-	7.9	45.1/44.4	30.1/32.2	77.6/78.8	0.75/59

Parameters evolution

Standard beam – 40/20 optics

Parameters evolution

Standard beam – 40/20 optics

BCMS (50/25)

Standard (50/25)

FILL DURATION [h]
RLIUP - PIC Performance - G. Arduini et al.

Beam-beam separation

Standard filling – 40/20 optics

• Frequency map analysis show the importance of increasing beam beam-separation for flat beams (no optimization of working point done yet) at least in the absence of Beam-Beam Compensator and no levelling (all the fill with minimum β^*)

D. Banfi, J. Barranco, T. Pieloni PRELIMINARY

