
CMS - Status of new
architectures and technologies

Peter Elmer, Princeton University

Giulio Eulisse, Shahzad Muzaffar, FNAL

David Abdurachmanov, Vilnius University

Introduction

• This presentation contains a mix of information on the status of of
several new technologies/architectures

• Some of it has been shown in earlier in one form or another at
ACAT, by David here and elsewhere, but there are some small
updates

• Most of this is still in "raw" form and not even fully discussed or
presented in CMS, so take this as just an informal "technology"
discussion.

• We will have to see how these things will eventually be used, but
there are some promising aspects.

ARM Demonstrator - ODROID U2

• Initial tests done with a small 32bit/
ARMv7 development board

• Exynos4412 Prime CPU

• 1.7GHz Cortex-A9 quad core

• 2GB L-DDR memory (total)

• eMMC, microSD, 2xUSB2.0,
10/100Mbps Ethernet

• $89 (~$233 with cables, cooling fan,
64GB eMMC, power adaptor, ...)

• Fedora 18 ARMv7-A, hard
floats, gcc 4.8, ODROID
kernel

ARM Servers

• This has led to the introduction of ARM-based servers in recent years,
such as the Boston Viridis: 192 cores in a 2U rack mount, consuming
<300W, 48 quad-core nodes (1.4GHz Cortex-A9), $20k (list price?)

• servers with the new ARMv8/64bit cores, expected next year, will likely
be the product that will either create (or not) sufficient market share

• Dell "Copper" servers:

• Current: 48 x quad-core Marvell Armada XP SoC = 192 ARMv7
cores, 1GB/core (3GB visible?), 3U rack?

• Future: 48 x quad-core=192 ARMv8 cores, 2GB/core, 750W in a 3U
rack mount?

Build Times on ODROID-U2

• ~4 hours mostly for gcc 4.8.0, but also a small set of basic
things we need for packaging:

• rpm, apt, zlib, ncurses, nspr, sqlite, etc.

• ~12 hours for all other "externals":

• ROOT, Geant4, Python, Fastjet, Valgrind, gdb, boost, Qt,
all generators, etc. Total of ~125 packages.

• ~25.5 hours for CMS software (CMSSW) - 3.5MSLOC of C
++, plus generated ROOT dictionaries

First Benchmarks - Simulation (no output)

Type Cores TDP
Power

Events/
min/core

Events/
min/Watt

Exynos441
2 Prime @
1.704GHz

4 4W? 1.14 1.14

Xeon
L5520 @
2.27GHz

2x4 120W? 3.50 0.23

Xeon
E5-2630L
@ 2.0GHz

2x6 190W? 3.33 0.21

First Benchmarks - Simulation (no output)

Type Cores full
Power

Events/
min/core

Events/
min/Watt

Exynos441
2 Prime @
1.704GHz

4 6W? 1.14 0.76

Xeon
L5520 @
2.27GHz

2x4 240W 3.50 0.12

Xeon
E5-2630L
@ 2.0GHz

2x6 270W 3.33 0.15

Benchmarks - Notes

• These are very quick and dirty benchmarks, this is a work in progress.
Numbers are "indicative", not final. Only very basic checks have been
that results are consistent. ROOT output is still off.

• For power I used the TDP numbers from www.cpubenchmark.net, plus
the quoted number for the ODROID (roughly measured by us),
obviously not the total power cost especially for the Xeon servers. For
those (second table "full power") I used some numbers from Bernd.

• I used one Nehalem (Q1 2010 release) and one Sandy Bridge (Q2
2012) "L" machine, both at CERN, vocms101 and vocms18. HT was
on for the latter, but I have done just quick single core benchmark
tests.

http://www.cpubenchmark.net
http://www.cpubenchmark.net

Dictionary Issues

• Comparing ARMv7-A and AMD64 executions
integer-overflow was detected, which
resulted in a code path on AMD64 not being
executed

• A number of checks were implemented by
Philippe in ROOT for (and similar) issues:

• “...missing the compiled STL collection proxy for
the data member of compiled class.”

• Checks/fixes are available in ROOT 5.34.09

Dictionary Issues

• In CMSSW_6_2_X we see 220+ errors generated by
ROOT:

• a missing dictionary (a collection) for data member or a base
class

• unknown type

• missing streamer or dictionary

• discarding <type>, no [dimension]

• genreflex does not share the same logic w/ rest of ROOT.
No errors received generating dictionaries.

• ROOT 5.34.09 and fixed errors to land in
CMSSW_7_0_X (new release series just opening)

Checkpoint-Restart

• It is desirable in certain circumstances to "checkpoint" the
state of a unix process, or set of processes, to disk with the
possibility of restarting it at a later time.

• This can be done in an application-specific custom fashion,
but it requires the addition and maintenance of dedicated
code.

• A generalized technology capable of checkpointing all
types of applications is thus desirable. In fact such
technologies have been in use in High Performance
Computing (HPC) and batch systems since more than 20
years.

Checkpoint-Restart - Interesting Use Cases

• Avoiding CPU-intensive initialization steps in frequently run applications,
perhaps avoid need for conditions or other loading

• Reproducibility of problems in long running jobs for debugging

• The application can be "replayed" from a point just before the error or
crash, rather than from the beginning

• In situations where resources are being used opportunistically, it can be
used to efficiently give access back to the "owner" and then later restart
when resources are free again

• In interactive applications, the current state can be saved ("workspace")

• For long-running parallel applications sensitive to hardware failure, the
state of calculations can be saved periodically to allow restart.

DMTCP

Userspace checkpointing, no
kernel-level access required
Checkpoints multithreaded

applications
Checkpoints distributed

applications

Minimum runtime overhead

Optional compression of
checkpoint images

Key Features

Open source

Can handle fork, exec, ssh,
open file descriptors,
TCP/IP sockets, etc.

Works on linux and
supports a wide range of

kernels

• Distributed MultiThreaded CheckPointing package
(DMTCP), developed at Northeastern University (NEU),
http://dmtcp.sourceforge.net

DMTCP - CMS Example

• Quick test with CMS Framework-based generation/simulation
application, memory footprint ~750MB RSS

• ~10s required to create compressed checkpoint image, 220MB

• 1-2s for uncompressed checkpoint

Trigger checkpoint externally while processing event #5

DMTCP - CMS Example

• And restart:

This was on x86-64, also ARM and Xeon Phi supported

Comments and ideas for next steps

• Note that their is a "closed world" assumption, i.e.
external connections need to be closed and reopened

• External trigger for checkpoint asynchronous with
Framework states, however a callable API also exists

• Can imagine using Framework services and/or USR signal
(and handler) to make checkpoint synchronous

Xeon Phi

• 60-ish lightweight cores with big vector units, coprocessor
packaging on PCIe bus

• Practical difficulties even to play with it:

• Cross compilation from x86-64 required

• Intel compiler required

• No software environment available

• Offload vs direct running on the card (future?)

Xeon Phi

• Probably not sensible (or performant) to run entire CMS
applications on the Xeon Phi, but it would facilitate tests to
have some software development environment

• Solution: produce a CMSSW release subset with a smaller
set of externals available (cross-compiled) and a subset of
the CMSSW itself (code which compiles with icc)

• Mechanically it implies that one can create a SCRAM
development area on the x86-64 host and code checked
out and built will automatically be cross compiled for the
Xeon Phi

Xeon Phi - CMSSW release subset status

• Release CMSSW_6_2_0_pre7 with arch slc6_mic_gcc472
available

• Externals: root, boost, xrootd, clhep, python, pythia8, roofit,
fastjet, gsl, many other smaller packages (not all 125 yet, though)

• Separate work on direct compilation of CMSSW code with icc
underway. I expect we will have iterations on the release to make
a larger subset of code available. Just one dummy CMSSW
package included in this "subset" release at the moment.

• Should help facilitate some types of prototyping on Xeon Phi,
without having to start from main() and by-hand Makefile

Cross-compilation notes

• Mostly external were build by just setting CXX="icpc -fPIC -mmic" and CC="icc -fPIC
-mmic" and --host=x86_64-k1om-linux to configure scripts for cross compilation

• Boost: Patched couple of files [b] and used TOOLSET intel

• Python: Needs to build it twice, once for build system and once for Xeon Phi cross
compilation.

• Fastjet: without -msse3

• GSL: Fixed configure script to not run test when cross-compiling

• OpenSSL: Configured w/o -fstack-protector and --with-krb5-flavor

• Root: Patched to build few executables without -mmic, Built without fftw3,castor and
dcap dependency

The End

