ATLAS Tau Reconstruction – Status and Plans

Peter Wagner
Uni Bonn

Overview

- · Performance in Run I
- Major Tau Upgrade for Run II: Substructure reconstruction
- Conclusion

" τ_h " = hadronically decaying tau

Run I Tau Reconstruction

• τ_h : narrow, isolated jet from neutral (e.g. π^0) and charged particles (e.g. π^{\pm})

Τε

- Calorimeter seed: anti-kT jet with R=0.4, $p_{\tau} > 10$ GeV, $|\eta| < 2.5$
 - Classify in number of tracks ("prongs") in ΔR =0.2 of jet seed
 - τ_h energy = energy of topological clusters within ΔR =0.2, with tauspecific calibration ("TES")
 - Discrimination against jets, electrons and muons using calo and tracker measurements

18.9.2013

Run I Tau Reconstruction

1.05

Calibration

 $|\eta| < 0.3$

 $0.3 < |\eta| < 0.8$

 $0.8 < |\eta| < 1.3$ $1.3 < |\eta| < 1.6$

 $1.6 < |\eta| < 2.4$

ATLAS Preliminary

2012 Simulation

1 prong

- TES calibration using MC including pileup correction
- Major uncertainties from single-particle response (mainly from data), pileup sensitivity (MC)

Run I Jet Discrimination

- Jet discrimination critical at LHC
- Need both power and pileup stability
- Use MVA to combine track and calorimeter variables that exploit collimation and low multiplicity of $\tau_{\rm h}$ decays
- ATLAS philosophy:
 - focus primarily on tracking variables which are inherently pileup robust
 - use only a few pileup-corrected calo variables

18.9.2013

Run I Tau Identification

- Measured using $Z \rightarrow \tau \tau$ events
- Good agreement between MC and data
- Trigger and identification uncertainties down to a few %

Run I Electron Discrimination

- ATLAS has powerful and pileup robust electron rejection for $\tau_{_{h}}$
- Best discrimination comes from transition radiation and shower shape

18.9.20 Vorkshop Cr

Remarks on Run I

- Good performance of rejection of jets, electrons and muons with remarkable robustness in the varying pileup conditions
- Good understanding of efficiencies and energy scales with uncertainties down to a few %

Things to keep in mind for τ_h 's Run I:

- Completely calo-based 4-momentum calculation
- Fixed size $\Delta R < 0.2$ core cone (not momentum-dependent)
- Neutral pion reconstruction not fully exploited

Major Tau Upgrade for Run 2 – Substructure Reconstruction

- Idea: Use high resolution tracking detector measurement for π^{\pm} instead of calorimeter-only
- To achieve this need to tell apart calorimeter energy deposits from π^{\pm} 's and π^{0} 's then substitute π^{\pm} calorimeter deposits with track
- Result: 4-vector of each π^{\pm} and $\pi^{0} \Rightarrow$
 - Higher τ_h energy resolution
 - Higher τ_h position resolution
 - Potentially higher mass resolution in di-tau events
 - Decay mode classification
 - Allows for polarization measurement

(Note: Current tau identification is already using substructure information – number of pi0s, evaluated by MVAs using global tau information)

Major Run 2 Upgrade – Tau Substructure Reconstruction

Major Run 2 Upgrade – Tau Substructure Reconstruction

Difficult: π^0 - π^{\pm} separation

Cannot just use available Topo-clusters

- π^{\pm} and π^{0} often overlap
- π^{\pm} often fragment into multiple clusters
- difficult to accurately recover pi0 energy deposit

Charged pion subtraction

• Estimate longitudinal position and energy of π^{\pm} in calorimeter

Charged pion subtraction

- Estimate longitudinal position and energy of π^{\pm} in calorimeter
- Subtract out cell energies consistent with parametrized π^{\pm} shower shapes
- Use shower shape info using MVA to identify π^0 clusters and suppress fake-clusters from non-ideal subtraction, pileup etc...

Tau decay mode classification

- Could naively count tracks and π^0 candidates to identify decay mode
- However using information on all reconstructed decay products simultaneously (e.g. kinematics) can improve classification
- Example: 1 charged cluster + 1 π^0 -identified neutral cluster + 1 neutral cluster that failed π^0 identification \rightarrow could be ρ -decay or a_1 -decay
- Example variables: energy fraction of charged clusters, BDT scores of neutral clusters, angular distance between charged and neutral clusters, ...

		J	•
Reco nProng	Reco nPi0	Reco nNon-pi0	Action
1	0	> 0	BDT 1p0n vs. 1p1n
1	1	0	BDT 1p0n vs. 1p1n
1	1	> 0	BDT 1p1n vs. 1pXn
1	> 1	any	BDT 1p1n vs. 1pXn
3	0	> 0	BDT 3p0n vs. 3pXn
3	> 0	any	BDT 3p0n vs. 3pXn

Tau Workshop Cracow

Tau decay mode classification

- Could naively count tracks and π^0 candidates to identify decay mode
- However using information on all reconstructed decay products simultaneously (e.g. kinematics) can improve classification
- Example: 1 charged cluster + 1 π^0 -identified neutral cluster + 1 neutral cluster that failed π^0 identification \rightarrow could be ρ -decay or a_1 -decay
- Example variables: energy fraction of charged clusters, BDT scores of neutral clusters, angular distance between charged and neutral clusters, ...

Result: decay mode and 4-vectors of decay particles and tau candidate

Recent Developments & Future Upgrades

EM-cal strip layer

- ATLAS calorimeter features finely segmented "strip layer"
- Useful for
 - distinguishing whether neutral cluster was created by single or multiple photons (one or multiple π^0 's)
 - Identifying π^0 's hiding in charged clusters

Recent Developments & Future Upgrades

Conversion track identification

- Decay photons from π^0 's can convert before they reach calorimeter
- Identify tracks from conversion electrons against charged pions
- Identify neutral clusters with a track stub as conversion electrons
- Possibly useful for tau-electron discrimination

Recent Developments & Future Upgrades

Momentum-dependent cone

- Tau decay products more collimated as a function of tau momentum
- Potentially useful for jet rejection
- Just to give you an idea a public plot by CDF:

tau jet axis, 100 GeV

18.9.2013 rau workshop Cracow 21

Conclusions

- Tau performance during Run I very successful
- Major tau upgrade for Run 2: substructure reconstruction, looks very promising
- Allows for decay mode classification and polarization measurements
- Lots of promising upgrades to come

Bonus