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1. Introduction and Motivation 



1.1   Hadronic -decays 

•  lepton discovered in 1976 by M. Perl  

et al. (SLAC-LBL group) 
 

– Mass : 

 

– Lifetime :  

 
• The only lepton heavy enough    

to decay into hadrons :  

lots of semileptonic decays ! 

 

 

 

 

 

 

 

 

• Very rich phenomenology but 

– Precise measurements needed 

– Have the hadronic uncertainties under control 
 

 Tests of QCD and EW interactions 
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1.1   Hadronic -decays 

•  lepton discovered in 1976 by M. Perl  

et al. (SLAC-LBL group) 
 

– Mass : 

 

– Lifetime : 

 
• The only lepton heavy enough    

to decay into hadrons :  

lots of semileptonic decays ! 

 Very rich phenomenology  

 Test of QCD and EW interactions 

 

• For the tests: 

– Precise measurements needed 

– Hadronic uncertainties under control 

 

  

 

 

 

 

 

 

 

 

• Very rich phenomenology but 

– Precise measurements needed 

– Have the hadronic uncertainties under control 
 

 Tests of QCD and EW interactions 
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1.2  Test of QCD and EW interactions 

• Inclusive  decays : full hadron spectra, perturbative tools: OPE… 

          fundamental SM parameters:  

          QCD studies 
 

• Exclusive  decays : specific hadron spectrum, non perturbative tools 

        Study of ffs, resonance parameters (MR, R) 
        Hadronization of QCD currents 
 
 

•  decays: tool to search for New Physics in inclusive and exclusive decays :  
 

   Unitarity test, CPV, LFV, EDMs, etc. 
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1.2  Test of QCD and EW interactions 

• Inclusive  decays : full hadron spectra, perturbative tools: OPE… 

          fundamental SM parameters:  

          QCD studies 
 

• Exclusive  decays : specific hadron spectrum, non perturbative tools 

        Study of ffs, resonance parameters (MR, R) 
        Hadronization of QCD currents 
 
 

•  decays: tool to search for New Physics in inclusive and exclusive decays :  
 

   Unitarity test, CPV, LFV, EDMs, etc. 
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2. Predicting the strange Brs and implication for Vus  



 

•                                                                                   naïve QCD prediction         
 
 

 

  Experimentally 
 

 

• Difficulty            QCD corrections : 
 

 

• Extraction of the strong coupling  

constant :  
 

 

 

 

• Determination of Vus :  

 
 

 

 

 

 

      

 

 

 

2.1   Introduction 
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•                                                                                breaking quantity  

                      0 in the           limit,  

                                     small, calculable with OPE  

 
 

 

 

 

 

 

•  

 

 

 

 

 

 

2.6 away from unitarity!  

Dominated by exp. uncertainties  

contrary to Kl3 

      Potentially the more precise  

      determination of Vus  

                                            

2.2   Extraction of Vus 
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2.3   strange Brs 

• Experimental measurements of the strange spectral functions not very precise 

 

 

 

 

 

 

 

 
 

 

 

 

 

• Before B-factories 
 

Smaller   K branching ratios          smaller                 smaller  
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New measurements are needed ! 

• With B-factories new measurements : 

 



2.3   strange Brs 

• PDG 2012: « Eigtheen of the 20 B-factory branching fraction measurements 

are smaller than the non-B-factory values. The average normalized difference 

between the two sets of measurements is -1.30 » (-1.41 for the 11 Belle 

measurements and -1.24 for the 9 BaBar measurements)   

       

 

• Measured modes by the 2 B factories: 
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• Modes measured in the strange channel for              :   
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• Modes measured in the strange channel for              :   
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• Modes measured in the strange channel for              :   
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modes crossed  

channels 
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• The Brs of these 3 modes can be predicted using Kaon Brs very precisely 

measured + form factor information assuming lepton universality 

 

   K :  
 

 

 

 

 
 

 Inputs needed:  

 Experimental : BR(Kl2), lifetimes 

 

 Theoretical : Short distance EW corrections  

          Long distance EM corrections 
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2.4  Prediction of   K Br 
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• The Brs of these 3 modes can be predicted using Kaon Brs very precisely 

measured + form factor information 
 

   Kp : 

 

 

 

 

 

 

 Inputs needed : 

‒ The Ke3 branching ratios, lifetimes  

‒ Phase space integrals          use a parametrization for the form factors 

to determine them from the data 

‒ The electromagnetic and isospin-breaking corrections  
 

 

 

 

 

                                                               
 

 

 

 

 

 

 

 

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

2.5  Prediction of   Kp Br 
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• Use a dispersive parametrization to combine experimental information on  

Kl3                     and   Kp decays 
 

      Vector form factor                  Scalar form factor 

        

 

 

 

 

 

 

 

 

 

 

 

         Dominance of K*(892) resonance                        No obvious dominance of a resonance 

 

2.5.1 Determination of the Kp form factors 
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• Parametrization to analyse both Kl3 and   

 Use dispersion relations 

 

• Omnès representation:  

 

 
 

 

    - 

 

 

    -                           unknown 

 
 

 
 

 

• Subtract dispersion relation to weaken the high energy contribution of the 

phase. Improve the convergence but sum rules to be satisfied! 
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• Dispersion relation with n subtractions in     : 

 

 
 

 

 

 

                   dispersion relation with 3 subtractions: 2 in s=0 and 1 in s=Kp 

             Callan-Treiman 

 

 

 
 

                 dispersion relation with 3 subtractions in s=0 

 

 

 

 
 

 

 

 

   
 
 

 

Determination of the Kp FFs: Dispersive representation 
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Extracted from a model including  

2 resonances K*(892) and K*(1414)  

Boito, Escribano, Jamin’09,’10 

Jamin, Pich, Portolés’08 
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Kp form factors from   Kp and Kl3 decays  
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• For precise calculations, it is crucial to estimate           the long-distance EM 

corrections to   Kp  

     Up to now neglected! 

 

 

• Adapt the calculations of  -   p- p0  

 

 

            ChPT to O(p2e2) 

 

            Counter-terms neglected 

 

 
 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

2.5.2  Long-distance electromagnetic corrections 
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• Form factors corrections: 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 to be compared 

2.5.2  Long-distance electromagnetic corrections 
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2.5.3  Isospin breaking corrections 

 
 

 

 

 

                                               + IB in one loop graphs + CT   

 

     approximated by 
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      from FLAG  
 

 

 

 

 

 

24 

 

 

 
 

 

0

0

*

2

2 2
1 3 1

4

K

K

K

K

f s m s
g

mf s F

p

p

p

 
p









 
   
 
 

 2,2g  SU(2)
0.5%

Kp  

 SU(2) mixing
2.9 0.4 0.5 %

Kp   

3

ˆ4

d u

s

m m

m m







 

 

0

0SU(2)

0
1

0

K
K

K

f

f

p
p

p










 

Emilie Passemar 

Antonelli, Cirigliano, Lusiani, E.P. ‘13  



  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

0.2173 0.0022
us

V   0.2211 0.0025
us

V  

2.6  Prediction of  strange Brs and Vus  
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3.  Constraining the LFV couplings of the Higgs 
     with hadronic  decays 

Celis, Cirigliano, E.P.’13 



• Discovery of a 125 GeV scalar particle : 

Standard Higgs?          Need to study its properties 

 

• Consider the possibility of non-standard LFV couplings of the Higgs  

  arise in several models 

 

• Conveniently parametrized by effective interaction 

 

 

 
 

• In the SM : 
 

• In full generality parametrization of the Yukawas 
 

   
 

 Assumption: CP conservation                       

         
 

 

 

  

3.1 Introduction  

Goudelis, Lebedev,Park’11 

Davidson, Grenier’10 
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•   
 

 

 

 

 

•      mediates LFV Higgs and generates at low energy 

 4 fermion operators 
 

 Dipole (loops) 
 

 

 

 

3.1.1  Introduction 
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3.1.2  Constraints on LFV Higgs couplings  

 

• Results : 

 

 

 

 

 

 

 

 

 

 

 
 

• Bounds from flavour factories : MEG,  

Belle, Babar and LHCb for   3 
 

• Strong constraint from     
loop induced process, very sensitive to  

UV completion          Model dependent 

Harnick, Koop, Zupan’12 

• From LHC : best constraints on  

h  , h  e 

 

 

N.B.: Diagonal couplings set to  

the SM values 
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• Most of the time not taken into account but important because tree level Higgs 

exchange          less sensitive to UV completion 
 

• Contribution from tree level Higgs exchange 

 

 

 

 

 

 

• Complementary analysis between LHC 

and flavour physics : crossed channel! 

        two different energy scales : 

 LHC: perturbative QCD 

 Flavour factories: intermediate  

energy, use of ChPT + dispersion relations 
 

  Very interesting processes to look at!  

 

 

 

 

 

 

 

 

 

 

 

 

PDG’12 

3.1.3  Constraints from hadronic  decays (  pp) 
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3.2  Constraints from   pp  

• Tree level Higgs exchange 

 

 

 

 

 

 
 

 

 

•     

 
 

 

 

• Problem : Have the hadronic part under control, ChPT not valid at these 

energies! 
 

 Use form factors determined with dispersion relations matched at low 

 energy to CHPT 

  

Y
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3.2.1  Constraints from   pp  

• Tree level Higgs exchange 

 

 

 

 

 

 
 

 

 

•     

 
 

 

 

• Problem : Have the hadronic part under control, ChPT not valid at these 

energies! 
 

 Use form factors determined with dispersion relations matched at low 

 energy to CHPT 

  

Y
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3.2.1  Constraints from   pp  

• Tree level Higgs exchange 
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with the form factors:  
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3.2.2  Constraints from   pp  

• Contribution from dipole diagrams 

 

 

 

 

 
 

 
 

 

•     

 
 

 

     with the vector form factor :  

 

 

•  

 

 

 

 

• Diagram only there in the case of                          absent for 

        neutral mode more model independent    

. .
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3.3.1  Determination of the form factors : FV(s) 

• Vector form factor 
 

 Precisely known from experimental measurement                        and   

                                   (isospin rotation) 

 

 

 Theoretically: decay very well described by resonances 

Following properties of analyticity and unitarity of the FF 

        Dispersive parametrization for F𝑉(s) to fit the Belle data on 
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Extracted from a model including  

3 resonances (770) , ’(1465)   

and ’’(1700)  fitted to the data  
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Very precise determination of FV(s) thanks to very precise measurements 

of Belle! 

 

 

 FV(s) has been extracted by Belle 

 
 

 

 

3.3.1  Determination of the form factors : FV(s) 
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3.3.2  Determination of the form factors : p(s),  p(s),  p(s) 

• With one channel, in the energy region pp  pp 
unitarity           the discontinuity of the form factor is known 

 

 
 

 

 
 

 

 

 

• Use analyticity to reconstruct the form factor in the entire space:  
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Phase of the FF is  

pp scattering phase  

Known from experiment 

Watson’s  theorem 
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•   pp          

Two channels contribute pp and  

 

• Generalisation of the previous method : 

 

Unitarity  
 

 

 

 

 

 

 

• Solve the dispersive integral equations iteratively starting with Omnès functions 

 

 

 

 

• According to Muskhelishvili, 2 sets of solutions {C1(s), D1(s)}, {C2(s), D2(s)} 

 

FFs linear combinations :  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Scattering matrix pp  pp, pp   

        pp,           
 

 

3.3.2  Determination of the form factors : p(s),  p(s),  p(s) 
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39 



• Inputs : Several inputs          solve the Roy-Steiner equations              

 

 
 

 

 

 

 

 

 

 

 

3.3.2  Determination of the form factors : p(s),  p(s),  p(s) 

Emilie Passemar 

pp  scattering 
Inelasticity 

  Buettiker, Descotes, Moussallam ’02 

Ananthanarayan et al’01, Colangelo et al’01 

40 



• Inputs : pp  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• A large number of theoretical analyses Descotes-Genon et al’01, Kaminsky et al’01, 

Garcia-Martin et al’09, Colangelo et al.’11 and all agree 

• 3 inputs: p(s), K(s),  from B. Moussallam           reconstruct T matrix 

 

 

3.3.2  Determination of the form factors : p(s),  p(s),  p(s) 
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3.4  Results 

Emilie Passemar Belle’08’11’12  except for * CLEO’97 

Dominated by 

 (770) (photon mediated) 

 f0(980)  (Higgs mediated) 

 

 0
f
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2.4  Comparison with ChPT 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

• ChPT, EFT only valid at low energy for 

 

 It is not valid up to E = !  
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• Rigorous treatment of hadronic part          bound reduced by one order of 

magnitude!          Very robust bounds!  

 

• ChPT, EFT only valid at low energy for 

               not valid up to                     ! 
 

 

3.5  Comparison with ChPT 

Emilie Passemar 
 E m m  

p << 4 ~ 1 GeVfpp 
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4. Conclusion and Outlook 



4.1   Conclusion 

• Hadronic -decays very interesting to study, very rich phenomenology 

‒ Need precise measurements 

‒ Theoretically in the intermediate regime  

ChPT not valid anymore! 

 Inclusive : perturbative tools (OPE…) 

 Exclusive : non perturbative tools  (FFs using RChT, matched to ChPT…)  
         

• Excellent probe of the SM and New Physics. Here I presented 2 examples 

‒ Extraction of Vus :  Possibility to determine it with inclusive and exclusive 

decays 

 Inclusive  decays 

 

Error dominated by experiment         Potentially the more precise 

extraction of Vus 

  Use information on the ffs from   Kp  + Kaon Brs 

 

 

 Difference between inclusive/exclusive modes:  

 Data normalization, unmeasured modes? New Physics? 

 

 

 

 
Test of consistency with Kaon physics  indicate higher va 

 

 

 

 

47 

exp th
0.2173 0.0020 0.0010

us
V   

0.2173 0.0022
us

V   0.2211 0.0025
us

V  

 
22

0 ~ 1.77 GeVs m 



4.1   Conclusion 

• Hadronic -decays very interesting to study, very rich phenomenology 

‒ Need precise measurements 

‒ Theoretically in the intermediate regime  

ChPT not valid anymore! 

 Inclusive : perturbative tools (OPE…) 

 Exclusive : non perturbative tools  (FFs using RChT, matched to ChPT…)   

 

       

• Excellent probe of the SM and New Physics. Here I presented 2 examples 

‒ LFV mode   pp for constraining LFV couplings of the Higgs 

Very interesting and important : 

 The more model-independent (tree level exchange of Higgs)  
 

 Same process can be studied at LHC and at the flavour factories with 

totally different experimental and theoretical conditions 
 

 Very little hadronic uncertainties: form factors determined using 

dispersion relations + ChPT         Robust bounds! 
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4.2  Outlook 

• High precision era in :   

– more precise data with LHC-B, Belle II, Tau-Charm? 

– theoretically: ffs parametrizations, EM, IB corrections 

 

• For the 2 examples I gave : 

– Vus : new measurements for the strange Brs are needed!  

– In the LFV mode   pp, the more model independent process is 
 

                                                 : no loop induced process  
 

but the only experimental bound from CLEO and weak ~10-5           

         need to be remeasured 

 

• I hope this week in Krakow will allow us to make some progress towards a 

better understanding of hadronic  decays!  
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6. Back-up 



1.1   Test of New Physics : Vus 

• Extraction of the Cabibbo-Kobayashi-Maskawa matrix element Vus 

 Fundamental parameter of the Standard Model 
Check unitarity of the first row of the CKM matrix:  

       Cabibbo Universality 

 

 

 

 Input in UT analysis 

 

• Look for new physics 

 In the Standard Model : W exchange          only V-A structure  
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Low energy: if LE<< BSM         EFT approach 

sensitive to scale + flavour structure of couplings 

 

 
 

 

          Reconstruct the underlying dynamics 

 

1.2  New Physics: Flavour factories & LHC 

High energy: if BSM ~ TeV         sensitive to new  

resonances, direct discovery  
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• From kaon, pion, baryon and nuclear decays 

 

 

 

 

 

 

 

 

 

 

 

• From  decays 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

1.3  Paths to Vud and Vus  
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1.1   Test of New Physics : Vus 

 BSM: sensitive to tree-level and loop effects of a large class of models 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

         BSM effects :  

 

 Look for new physics by comparing the extraction of Vus from different 

processes: helicity suppressed K2, helicity allowed Kl3, hadronic  decays 
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2.4  Comparison with ChPT 
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1.1   Test of New Physics : Vus 

• Studying  and Kl3 decays         indirect searches of new physics, 

several possible high-precision tests: 

 Extraction of Vus 

 

 

 

 

 
 

 

 

 

   Knowledge of the two form factors:  
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•           accessible in Ke3 and K3 decays 
 

•          only accessible in K3 (suppressed by ml
2/MK

2) + correlations      

  difficult to measure  
 

• Data from Belle and BaBar on   Kp decays (Belle II, Tau-Charm soon!) 

 Use them to constrain the form factors and especially  

 

•   Kp decays  

 
 

 

 

 Hadronic matrix element: Crossed channel 

 

 

 

 

1.2   Determination of the Kp form factors 
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3.1  Kp form factors from   Kp and Kl3 decays  
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• Fit to the   Kp  decay data  

– from Belle [Epifanov et al’08] (BaBar?)  

 

 

 

 

 

 

 

 

 

 

 

• Possible combination with Kl3 decay data fits 
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Results for the Kp  form factors 
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Results for the p p vector form factor 
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