Using dispersion relations for hadronic **t**-decays: from SM to New Physics

Emilie Passemar LANL

Workshop on $\boldsymbol{\tau}$ lepton decay

Krakow, September 16, 2013

In collaboration with :

- V. Bernard (IPN-Orsay), D. R. Boito (TU-Munich), work in progress
- M. Antonelli, (INF-LNF Frascati), V. Cirigliano (LANL), A. Lusiani (INF- Scuola Normale Pisa) [ArXiv:1304.8134 [hep-ph]]
- A. Celis (IFIC-Valencia), V. Cirigliano (LANL), on ArXiv tomorrow

- 1. Introduction and Motivation
- 2. Predicting the strange Brs and implications for V_{us}
- 3. Constraining the LFV couplings of the Higgs with hadronic τ decays
- 4. Conclusion and Outlook

1. Introduction and Motivation

PDG'12

1.1 Hadronic τ-decays

 τ lepton discovered in 1976 by M. Perl et al. (SLAC-LBL group)
 PDG'12

- Mass :
$$m_{\tau} = 1.77682(16) \text{ GeV}$$

- Lifetime :
$$\tau_{\tau} = 2.096(10) \cdot 10^{-13}$$

• The only lepton heavy enough to decay into hadrons : lots of semileptonic decays !

PDG'12

1.1 Hadronic τ-decays

 τ lepton discovered in 1976 by M. Perl et al. (SLAC-LBL group)
 PDG'12

- Mass :
$$m_{\tau} = 1.77682(16) \text{ GeV}$$

- Lifetime :
$$\tau_{\tau} = 2.096(10) \cdot 10^{-13}$$

S

- The only lepton heavy enough to decay into hadrons : lots of semileptonic decays !
 - Very rich phenomenology Test of QCD and EW interactions
- For the tests:
 - Precise measurements needed
 - Hadronic uncertainties under control

1.2 Test of QCD and EW interactions

• Inclusive τ decays : full hadron spectra, perturbative tools: OPE... \overline{u}

 $\tau \to (\bar{u}d, \bar{u}s) \nu_{\tau}$

fundamental SM parameters: $\alpha_s(m_{\tau}), |V_{us}|, m_s$ QCD studies

• Exclusive τ decays : specific hadron spectrum, *non perturbative tools*

 $\tau \rightarrow (PP, PPP, ...) \nu_{\tau}$

Study of ffs, resonance parameters (M_R , Γ_R) Hadronization of QCD currents

τ decays: tool to search for New Physics in inclusive and exclusive decays :
 Unitarity test, CPV, LFV, EDMs, etc.

Test of unitarity
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \stackrel{?}{=} 1$$

 $0^+ \rightarrow 0^+$ K_{l3} decays Negligible
 β decays or τ decays (B decays)

Hadrons

1.2 Test of QCD and EW interactions

• Inclusive τ decays : full hadron spectra, perturbative tools: OPE... \overline{u}

 $\tau \to (\bar{u}d, \bar{u}s) \nu_{\tau}$

fundamental SM parameters: $\alpha_s(m_{\tau}), |V_{us}|, m_s$ QCD studies

• Exclusive τ decays : specific hadron spectrum, *non perturbative tools*

 $\tau \rightarrow (PP, PPP, ...) \nu_{\tau}$

Study of ffs, resonance parameters (M_R , Γ_R) Hadronization of QCD currents

• τ decays: tool to search for New Physics in inclusive and exclusive decays : Unitarity test, CPV, LFV, EDMs, etc. τ W d,s + SUSY loops, Leptoquarks, Z' Charged Hid

Leptoquarks, Z', Charged Higgs, Right-Handed Currents,....

Hadrons

2. Predicting the strange Brs and implication for V_{us}

2.1 Introduction

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \rightarrow \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \rightarrow \nu_{\tau} e^{-} \overline{\nu_{e}})} = R_{\tau}^{NS} + R_{\tau}^{S} \approx |V_{ud}|^{2} N_{C} + |V_{us}|^{2} N_{C}$$

naïve QCD prediction

$$\Rightarrow \text{ Experimentally } R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.6291 \pm 0.0086$$

- Difficulty \square QCD corrections : $R_{\tau} = |V_{ud}|^2 N_C + |V_{us}|^2 N_C + O(\alpha_s)$
- Determination of V_{us} :

2.2 Extraction of V_{us}

•
$$\delta R_{\tau} \equiv \frac{R_{\tau}^{NS}}{|V_{ud}|^2} - \frac{R_{\tau}^S}{|V_{us}|^2} = N_C S_{EW} \left(\delta_{NP}^{NS} - \delta_{NP}^S \right) \quad SU(3) \text{ breaking quantity} \\ \longrightarrow 0 \text{ in the } SU(3) \text{ limit,} \\ \text{small, calculable with } OPE \\ \delta R_{\tau} = f(m_{\tau}) \quad \sum SR_{\tau} = 0.240(32) \quad \text{Comiz, lowin, Disb, Dredeo, Solverb'07}$$

2.3 τ strange Brs

• Experimental measurements of the strange spectral functions not very precise

2.3 τ strange Brs

- PDG 2012: « Eigtheen of the 20 *B*-factory branching fraction measurements are smaller than the non-*B*-factory values. The average normalized difference between the two sets of measurements is -1.30 » (-1.41 for the 11 Belle measurements and -1.24 for the 9 BaBar measurements)
- Measured modes by the 2 B factories:

Mode	$\operatorname{BaBar}-\operatorname{Belle}$
	Normalized Difference $(\#\sigma)$
$\pi^-\pi^+\pi^-\nu_\tau \text{ (ex. } K^0)$	+1.4
$K^-\pi^+\pi^-\nu_\tau$ (ex. K^0)	-2.9
$K^-K^+\pi^-\nu_{\tau}$	-2.9
$K^- K^+ K^- \nu_{\tau}$	-5.4
$\eta \ K^- \nu_{\tau}$	-1.0
$\phi K^- \nu_{\tau}$	-1.3

2.3 τ strange Brs

• Modes measured in the strange channel for $\tau \rightarrow s$:

Branching fraction	HFAG Winter 2012 fit	HFAG'12
$\Gamma_{10} = K^- \nu_\tau$	$(0.6955 \pm 0.0096) \cdot 10^{-2}$	
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4322\pm0.0149)\cdot10^{-2}$	
$\Gamma_{23} = K^- 2\pi^0 \nu_\tau \ (\text{ex. } K^0)$	$(0.0630 \pm 0.0222) \cdot 10^{-2}$	
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \; (\text{ex. } K^{0}, \eta)$	$(0.0419 \pm 0.0218) \cdot 10^{-2}$	
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$(0.8206 \pm 0.0182) \cdot 10^{-2}$	
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.3649 \pm 0.0108) \cdot 10^{-2}$	
$\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau$	$(0.0269 \pm 0.0230) \cdot 10^{-2}$	
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_\tau$	$(0.0222\pm 0.0202)\cdot 10^{-2}$	
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$(0.0153 \pm 0.0008) \cdot 10^{-2}$	
$\Gamma_{130} = K^- \pi^0 \eta \nu_\tau$	$(0.0048 \pm 0.0012) \cdot 10^{-2}$	
$\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_\tau$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$	
$\Gamma_{151} = K^- \omega \nu_\tau$	$(0.0410 \pm 0.0092) \cdot 10^{-2}$	
$\Gamma_{801} = K^- \phi \nu_\tau (\phi \to KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$	
$\Gamma_{802} = K^- \pi^- \pi^+ \nu_\tau \; (\text{ex. } K^0, \omega)$	$(0.2923 \pm 0.0068) \cdot 10^{-2}$	
$\Gamma_{803} = K^- \pi^- \pi^+ \pi^0 \nu_\tau \text{ (ex. } K^0, \omega, \eta)$	$(0.0411 \pm 0.0143) \cdot 10^{-2}$	
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$	

2.3 τ strange Brs

 $\Gamma_{801} = K^- \phi \nu_\tau (\phi \to KK)$

 $\Gamma_{110} = X_s^- \nu_\tau$

 $\Gamma_{802} = K^- \pi^- \pi^+ \nu_{\tau} \text{ (ex. } K^0, \omega)$

 $\Gamma_{803} = K^- \pi^- \pi^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0, \omega, \eta)$

• Modes measured in the strange channel for $\tau \rightarrow s$:

HFAG'12 HFAG Winter 2012 fit Branching fraction $(0.6955 \pm 0.0096) \cdot 10^{-2}$ $\Gamma_{10} = K^- \nu_{\tau}$ ~70% of the decay $\Gamma_{16} = K^- \pi^0 \nu_\tau$ $(0.4322 \pm 0.0149) \cdot 10^{-2}$ modes crossed $(0.0630 \pm 0.0222) \cdot 10^{-2}$ $\Gamma_{23} = K^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$ channels $\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$ $(0.0419 \pm 0.0218) \cdot 10^{-2}$ from Kaons! $\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$ $(0.8206 \pm 0.0182) \cdot 10^{-2}$ $\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$ $(0.3649 \pm 0.0108) \cdot 10^{-2}$ $\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau$ $(0.0269 \pm 0.0230) \cdot 10^{-2}$ $\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_{\tau}$ $(0.0222 \pm 0.0202) \cdot 10^{-2}$ $\Gamma_{128} = K^- \eta \nu_{\tau}$ $(0.0153 \pm 0.0008) \cdot 10^{-2}$ $\Gamma_{130} = K^- \pi^0 \eta \nu_\tau$ $(0.0048 \pm 0.0012) \cdot 10^{-2}$ $\Gamma_{132} = \pi^{-} \overline{K}^{0} \eta \nu_{\tau}$ $(0.0094 \pm 0.0015) \cdot 10^{-2}$ $\Gamma_{151} = K^- \omega \nu_\tau$ $(0.0410 \pm 0.0092) \cdot 10^{-2}$

 $(0.0037 \pm 0.0014) \cdot 10^{-2}$

 $(0.2923 \pm 0.0068) \cdot 10^{-2}$

 $(0.0411 \pm 0.0143) \cdot 10^{-2}$

 $(2.8746 \pm 0.0498) \cdot 10^{-2}$

14

2.3 τ strange Brs

• Modes measured in the strange channel for $\tau \rightarrow s$:

HFAG'12 HFAG Winter 2012 fit Branching fraction $(0.6955 \pm 0.0096) \cdot 10^{-2}$ $\Gamma_{10} = K^- \nu_{\tau}$ ~70% of the decay $\Gamma_{16} = K^- \pi^0 \nu_\tau$ $(0.4322 \pm 0.0149) \cdot 10^{-2}$ modes crossed $(0.0630 \pm 0.0222) \cdot 10^{-2}$ $\Gamma_{23} = K^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$ channels $\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$ $(0.0419 \pm 0.0218) \cdot 10^{-2}$ from Kaons! $\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$ $(0.8206 \pm 0.0182) \cdot 10^{-2}$ $\Gamma_{40} = \pi^- \overline{K}{}^0 \pi^0 \nu_\tau$ $(0.3649 \pm 0.0108) \cdot 10^{-2}$ Up to ~90% $\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau$ $(0.0269 \pm 0.0230) \cdot 10^{-2}$ Including the $\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_\tau$ 2π modes $(0.0222 \pm 0.0202) \cdot 10^{-2}$ $\Gamma_{128} = K^- \eta \nu_{\tau}$ $(0.0153 \pm 0.0008) \cdot 10^{-2}$ $\Gamma_{130} = K^- \pi^0 \eta \nu_\tau$ $(0.0048 \pm 0.0012) \cdot 10^{-2}$ $\Gamma_{132} = \pi^{-} \overline{K}^{0} \eta \nu_{\tau}$ $(0.0094 \pm 0.0015) \cdot 10^{-2}$ $(0.0410 \pm 0.0092) \cdot 10^{-2}$ $\Gamma_{151} = K^- \omega \nu_{\tau}$ $(0.0037 \pm 0.0014) \cdot 10^{-2}$ $\Gamma_{801} = K^- \phi \nu_\tau (\phi \to KK)$ $\Gamma_{802} = K^{-}\pi^{-}\pi^{+}\nu_{\tau} \text{ (ex. } K^{0}, \omega)$ $(0.2923 \pm 0.0068) \cdot 10^{-2}$ $\Gamma_{803} = K^- \pi^- \pi^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0, \omega, \eta)$ $(0.0411 \pm 0.0143) \cdot 10^{-2}$ $(2.8746 \pm 0.0498) \cdot 10^{-2}$ $\Gamma_{110} = X_s^- \nu_\tau$

Antonelli, Cirigliano, Lusiani, E.P. '13

• The Brs of these 3 modes can be predicted using Kaon Brs very precisely measured + form factor information assuming lepton universality

$$\mathbf{F} \ \mathbf{\tau} \to \mathbf{K} \mathbf{v}_{\tau} :$$

$$BR(\tau \to K \nu_{\tau}) = \frac{m_{\tau}^3}{2m_K m_{\mu}^2} \underbrace{S_{\rm EW}^{\tau}}_{S_{\rm EW}} \left(\frac{1 - m_K^2 / m_{\tau}^2}{1 - m_{\mu}^2 / m_K^2} \right)^2 \underbrace{\frac{\tau_{\tau}}{\tau_K}}_{T_K} \underbrace{\delta_{\rm EM}^{\tau/K}}_{EM} BR(K_{\ell 2})$$

> Inputs needed:

1/

 \rightarrow Experimental : BR(K₁₂), lifetimes

→ Theoretical : Short distance EW corrections Long distance EM corrections

$$\implies BR(\tau^- \to K^- \nu_{\tau}) = (0.713 \pm 0.003)\%$$

Antonelli, Cirigliano, Lusiani, E.P. '13

 $BR(K \to \pi e \bar{\nu}_e$

 $K\pi$

 $K\pi$

• The Brs of these 3 modes can be predicted using Kaon Brs very precisely measured + form factor information

$$\mathcal{F} \tau \to \kappa \pi \nu_{\tau} :$$

$$BR(\tau \to \bar{K} \pi \nu_{\tau}) = \frac{2m_{\tau}^5}{m_K^5} \frac{S_{\rm EW}^{\tau}}{S_{\rm EW}^K} \frac{I_K^{\tau}}{I_K^\ell} \frac{\left(1 + \delta_{\rm EM}^{K\tau} + \delta_{\rm EM}^{K\tau}\right)}{\left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm EM}^{K\ell}\right)}$$

- The K_{e3} branching ratios, lifetimes
- Phase space integrals use a parametrization for the form factors to determine them from the data

 $I_{K}^{\ell,\tau} = \int ds \ F\left(s,\overline{f}_{+}(s),\overline{f}_{0}(s)\right)$

- The electromagnetic and isospin-breaking corrections

2.5.1 Determination of the $K\pi$ form factors

• Use a dispersive parametrization to combine experimental information on K_{I3} $(K \rightarrow \pi l \nu_l)$ and $\tau \rightarrow K \pi \nu_{\tau}$ decays

Dispersive representation

- Parametrization to analyse both K_{I3} and τ
 Use dispersion relations
- Omnès representation:

$$\overline{f}_{+,0}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\phi_{+,0}(s')}{s'-s-i\varepsilon}\right]$$

 $\phi_{+,0}(s)$: phase of the form factor

-
$$s < s_{in}$$
: $\phi_{+,0}(s) = \delta_{K\pi}(s)$
K π scattering phase

$$s ≥ s_{in} : \phi_{+,0}(s) \text{ unknown}$$

$$⇒ \phi_{+,0}(s) = \phi_{+,0as}(s) = \pi \pm \pi \quad (\bar{f}_{+,0}(s) \rightarrow 1/s)$$

$$Brodsky \& Lepage$$

 Subtract dispersion relation to weaken the high energy contribution of the phase. Improve the convergence but sum rules to be satisfied!

Determination of the $K\pi$ FFs: Dispersive representation

• Dispersion relation with n subtractions in \overline{s} : Bernard, Boito, E.P., in progress

$$\overline{f}_{+,0}(s) = \exp\left[P_{n-1}(s) + \frac{\left(s-\overline{s}\right)^n}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{\left(s'-\overline{s}\right)^n} \frac{\phi_{+,0}(s')}{s'-s-i\varepsilon}\right]$$

 $F_0(s) \implies \text{dispersion relation with 3 subtractions: 2 in s=0 and 1 in s=<math>\Delta_{K\pi}$ *Callan-Treiman*

$$\overline{f}_{0}(s) = \exp\left[\frac{s}{\Delta_{K\pi}} \left(\ln C + \left(s - \Delta_{K\pi}\right) \left(\frac{\ln C}{\Delta_{K\pi}} - \frac{\lambda_{0}}{m_{\pi}^{2}}\right) + \frac{\Delta_{K\pi}s\left(s - \Delta_{K\pi}\right)}{\pi} \int_{\left(m_{K} + m_{\pi}\right)^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\phi_{0}(s')}{\left(s' - \Delta_{K\pi}\right)\left(s' - s - i\varepsilon\right)}\right)\right]$$

 $F_{+}(s) \implies$ dispersion relation with 3 subtractions in s=0 Boito, Escribano, Jamin'09,'10

$$\overline{f}_{+}(s) = \exp\left[\lambda_{+}^{'}\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{+}^{''} - \lambda_{+}^{'2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{(m_{K}+m_{\pi})^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{+}(s')}{(s'-s-i\varepsilon)}\right]$$

Jamin, Pich, Portolés'08

Extracted from a model including 2 resonances K*(892) and K*(1414)

2.5.2 Long-distance electromagnetic corrections

- For precise calculations, it is crucial to estimate corrections to $\tau \rightarrow K \pi v_{\tau}$ Up to now neglected!
- Adapt the calculations of $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$

 \rightarrow Counter-terms neglected

22

Cirigliano, Ecker, Neufeld'02

Antonelli, Cirigliano, Lusiani, E.P. '13

 δ_{EM}^{τ} the long-distance EM

2.5.2 Long-distance electromagnetic corrections

Antonelli, Cirigliano, Lusiani, E.P. '13

2.5.3 Isospin breaking corrections $\delta_{SU(2)}^{K\pi} = \frac{f_{+}^{K^{+}\pi^{-}}(0)}{f_{+}^{K^{0}\pi^{-}}(0)} - 1$

Antonelli, Cirigliano, Lusiani, E.P. '13

Mode	BR	$\% \ \mathrm{err}$	$BR(K_{e3})$	τ_K	$ au_{ au}$	I_K^τ/I_K^e	$\Delta_{\rm EM}$	$\Delta_{\rm SU(2)}$
$\tau^- \to \bar{K}^0 \pi^- \nu_\tau$	0.8569 ± 0.0293	3.42	0.22	0.41	0.35	3.34	0.46	0
$\tau^- \to K^- \pi^0 \nu_\tau$	0.4709 ± 0.0178	3.79	0.06	0.12	0.34	3.60	0.47	1.00

Branching fraction	HFAG Winter 2012 fit	Prediction
$\Gamma_{10} = K^- \nu_\tau$	$(0.6955 \pm 0.0096) \cdot 10^{-2}$	$(0.713 \pm 0.003) \cdot 10^{-2}$
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4322 \pm 0.0149) \cdot 10^{-2}$	$(0.4709 \pm 0.0178) \cdot 10^{-2}$
$\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$	$(0.8206 \pm 0.0182) \cdot 10^{-2}$	$(0.8569 \pm 0.0293) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$	$(2.9714 \pm 0.0561) \cdot 10^{-2}$

3. Constraining the LFV couplings of the Higgs with hadronic τ decays

Celis, Cirigliano, E.P.'13

3.1 Introduction

- Discovery of a 125 GeV scalar particle : Standard Higgs? Need to study its properties
- Consider the possibility of non-standard LFV couplings of the Higgs arise in several models
 Goudelis, Lebedev, I
 - Goudelis, Lebedev,Park'11 Davidson, Grenier'10
- Conveniently parametrized by effective interaction

$$\mathcal{L}_{Y} = -m_{i}\overline{f}_{L}^{i}f_{R}^{i} - Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{i}\right)\varphi + h.c. + \dots$$

Harnick, Koop, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

- In the SM : $Y_{ij}^{h_{SM}} = \frac{m_i}{v} \delta_{ij}$
- In full generality parametrization of the Yukawas

$$Y_{ii}^{\varphi} = y_i^{\varphi} \frac{m_i}{v}$$

$$\Rightarrow \text{ Assumption: CP conservation } Y_{ij}^{\varphi} \xrightarrow{\text{real for } \varphi \equiv h} \text{ CP-even Higgs}$$

$$\Rightarrow \text{ Imaginary for } \varphi \equiv A \text{ CP-odd Higgs}$$

3.1.1 Introduction

•
$$\mathcal{L}_{Y} \stackrel{\text{EFT}}{\longrightarrow} \mathcal{L}_{d=6} = -\frac{\lambda_{\ell}^{'ij}}{\Lambda^{2}} (\overline{f}_{L}^{i} \overline{f}_{R}^{j}) H (H^{\dagger} H) + h.c. + ...$$

- \mathcal{L}_{Y} mediates LFV Higgs and generates at low energy
 - ➤ 4 fermion operators
 - Dipole (loops)

3.1.2 Constraints on LFV Higgs couplings

• Results :

Channel	BR 90% CL	$\sqrt{\left Y_{ij}^{h}\right ^{2}+\left Y_{ji}^{h}\right ^{2}}$
$\begin{array}{c} \mu \to e\gamma \\ \mu \to 3e \end{array}$	$< 2.4 \times 10^{-12}$ $< 1 \times 10^{-12}$	$< 3.6 \times 10^{-6} \\ \lesssim 3.1 \times 10^{-5}$
$\begin{array}{c} \tau \to e\gamma \\ \tau \to 3e \end{array}$	$< 3.3 \times 10^{-8} < 2.7 \times 10^{-8}$	< 0.014 $\lesssim 0.12$
$\begin{aligned} \tau &\to \mu \gamma \\ \tau &\to 3 \mu \end{aligned}$	$< 4.4 \times 10^{-8}$ $< 2.1 \times 10^{-8}$	$ < 0.016 \\ \lesssim 0.25 $

- Bounds from flavour factories : *MEG*, *Belle*, *Babar* and *LHCb* for $\tau \rightarrow 3\mu$
- Strong constraint from $\tau \rightarrow \mu \gamma$ loop induced process, very sensitive to UV completion \longrightarrow Model dependent

Harnick, Koop, Zupan'12

• From LHC : best constraints on

 $h \to \tau \mu, \, h \to \tau e$

the SM values

3.1.3 Constraints from hadronic τ decays ($\tau \rightarrow \mu \pi \pi$)

- Most of the time not taken into account but important because tree level Higgs exchange is less sensitive to UV completion
- Contribution from tree level Higgs exchange

3.2 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange

• Problem : Have the hadronic part under control, ChPT not valid at these energies!

Use form factors determined with dispersion relations matched at low energy to CHPT Dreiner, Hanart, Kubis, Meissner'13

3.2.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange

 Problem : Have the hadronic part under control, ChPT not valid at these energies!

Use form factors determined with dispersion relations matched at low energy to CHPT Dreiner, Hanart, Kubis, Meissner'13

3.2.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange

$$\frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} = \frac{(m_\tau^2 - s)^2 \sqrt{s - 4m_\pi^2}}{256\pi^3 m_\tau^3} \frac{\left(|Y_{\tau\mu}^h|^2 + |Y_{\mu\tau}^h|^2\right)}{M_h^4 v^2} |\mathcal{K}_\Delta \Delta_\pi(s) + \mathcal{K}_\Gamma \Gamma_\pi(s) + \mathcal{K}_\theta \theta_\pi(s)|^2$$

with the form factors:

$$\langle \pi^{+}\pi^{-} | m_{u}\bar{u}u + m_{d}\bar{d}d | 0 \rangle \equiv \Gamma_{\pi}(s)$$

$$\langle \pi^{+}\pi^{-} | m_{s}\bar{s}s | 0 \rangle \equiv \Delta_{\pi}(s) \qquad \langle \pi^{+}\pi^{-} | \theta^{\mu}_{\mu} | 0 \rangle \equiv \theta_{\pi}(s)$$

3.2.2 Constraints from $\tau \rightarrow \mu \pi \pi$

• Contribution from dipole diagrams

$$\mathcal{L}_{eff} = c_L Q_{L\gamma} + c_R Q_{R\gamma} + h.c.$$

with the dim-5 EM penguin operators :

$$Q_{L\gamma,R\gamma} = \frac{e}{8\pi^2} m_{\tau} \left(\mu \sigma^{\alpha\beta} P_{L,R} \tau\right) F_{\alpha\beta}$$

•
$$\frac{d\Gamma(\tau \to \ell \pi^+ \pi^-)}{d\sqrt{s}} = \frac{\alpha^2 |F_V(s)|^2 \left(|c_L|^2 + |c_R|^2\right)}{768\pi^5 m_\tau} \frac{(s - 4m_\pi^2)^{3/2} (m_\tau^2 - s)^2 (s + 2m_\tau^2)}{s^2}$$

with the vector form factor :

$$\langle \pi^+(p_{\pi^+})\pi^-(p_{\pi^-})|\frac{1}{2}(\bar{u}\gamma^{\alpha}u-\bar{d}\gamma^{\alpha}d)|0\rangle \equiv F_V(s)(p_{\pi^+}-p_{\pi^-})^{\alpha}$$

• Diagram only there in the case of $\tau^- \rightarrow \mu^- \pi^+ \pi^-$ absent for $\tau^- \rightarrow \mu^- \pi^0 \pi^0$ neutral mode more model independent

Emilie Passemar

 $C_{L,R} = f\left(\mathbf{Y}_{\tau\mu}\right)$

3.3.1 Determination of the form factors : $F_V(s)$

- Vector form factor
 - > Precisely known from experimental measurement $e^+e^- \rightarrow \pi^+\pi^-$ and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)
 - Theoretically: decay very well described by resonances Following properties of *analyticity* and *unitarity* of the FF

Dispersive parametrization for $F_V(s)$ to fit the Belle data on $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{+}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{(s'+s-i\varepsilon)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

3.3.1 Determination of the form factors : $F_V(s)$

Very precise determination of $\mathsf{F}_V(s)$ thanks to very precise measurements of Belle!

• With one channel, in the energy region $\pi\pi \to \pi\pi$ unitarity \implies the discontinuity of the form factor is known

disc
$$\boxed{1}_{2i} disc \ F_I(s) = \operatorname{Im} F_I(s) = F_I(s) \ \sin \delta_I(s) e^{-i\delta_I(s)}$$

Phase of the FF is $\pi\pi$ scattering phase Known from experiment

Watson's theorem

• Use analyticity to reconstruct the form factor in the entire space:

Omnès representation: $F_I(s) = P_I(s) \Omega_I(s)$ polynomial Omnès function $\Omega_I(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta_I(s')}{s'-s-i\varepsilon}\right]$

P_I(s) not known but determined from a matching to CHPT at low energy

•
$$\tau \rightarrow \mu \pi \pi \implies 4m_{\pi}^2 < s < (m_{\tau} - m_{\mu})^2 \sim (1.77 \text{ GeV})^2$$

Two channels contribute $\pi\pi$ and *KK*

Donoghue, Gasser, Leutwyler'90 Moussallam'99

Generalisation of the previous method :

$$\begin{array}{ll} \text{Jnitarity} & \longrightarrow & \Gamma_m^{\star}(s) = \sum_n \left\{ \delta_{mn} + 2 \, i \, T_{mn}(s) \, \sigma_n(s) \right\}^{\star} \Gamma_n(s) \\ & \swarrow & \swarrow \\ & \text{Scattering matrix } \pi\pi \to \pi\pi, \ \pi\pi \to K\overline{K} \\ & K\overline{K} \to \pi\pi, \ K\overline{K} \to K\overline{K} \end{array}$$

Solve the dispersive integral equations iteratively starting with Omnès functions

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^\infty \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_$$

According to Muskhelishvili, 2 sets of solutions {C₁(s), D₁(s)}, {C₂(s), D₂(s)}

FFs linear combinations :
$$\Gamma_n(s) = P_{\Gamma}(s)C_n(s) + Q_{\Gamma}(s)D_n(s)$$
semar Determined from a matching to ChPT

Emilie Passemar

l

39

Inputs : Several inputs solve the Roy-Steiner equations

Ananthanarayan et al'01, Colangelo et al'01

• Inputs : $\pi\pi \rightarrow K\overline{K}$

- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow reconstruct *T* matrix Emilie Passemar

3.4 Results

3.5 Comparison with ChPT

- Rigorous treatment of hadronic part bound reduced by one order of magnitude!
 Very robust bounds!
- ChPT, EFT only valid at low energy for $p \ll \Lambda = 4\pi f_{\pi} \sim 1 \text{ GeV}$ \longrightarrow not valid up to $E = (m_{\tau} - m_{\mu})!$

4. Conclusion and Outlook

4.1 Conclusion

- Hadronic τ -decays very interesting to study, very rich phenomenology
 - Need precise measurements
 - Theoretically in the intermediate regime $0 < s < m_{\tau}^2 \sim (1.77 \text{ GeV})^2$ ChPT not valid anymore!
 - Inclusive : perturbative tools (OPE...)
 - > Exclusive : non perturbative tools (FFs using RChT, matched to ChPT...)
- Excellent probe of the SM and New Physics. Here I presented 2 examples
 - Extraction of V_{us} : Possibility to determine it with inclusive and exclusive decays

> Inclusive τ decays $\longrightarrow |V_{us}| = 0.2173 \pm 0.0020_{exp} \pm 0.0010_{th}$

Error dominated by experiment \implies Potentially the more precise extraction of V_{us}

> Use information on the ffs from $\tau \rightarrow K\pi v_{\tau}$ + Kaon Brs

Difference between inclusive/exclusive modes: Data normalization, unmeasured modes? New Physics?

4.1 Conclusion

- Hadronic τ -decays very interesting to study, very rich phenomenology
 - Need precise measurements
 - Theoretically in the intermediate regime $0 < s < m_{\tau}^2 \sim (1.77 \text{ GeV})^2$ ChPT not valid anymore!
 - Inclusive : perturbative tools (OPE...)
 - > Exclusive : non perturbative tools (FFs using RChT, matched to ChPT...)
- Excellent probe of the SM and New Physics. Here I presented 2 examples
 - LFV mode $\tau \rightarrow \mu \pi \pi$ for constraining LFV couplings of the Higgs Very interesting and important :
 - > The more model-independent (tree level exchange of Higgs)
 - Same process can be studied at LHC and at the flavour factories with totally different experimental and theoretical conditions
 - Very little hadronic uncertainties: form factors determined using dispersion relations + ChPT > Robust bounds!

4.2 Outlook

- High precision era in τ :
 - more precise data with LHC-B, Belle II, Tau-Charm?
 - theoretically: ffs parametrizations, EM, IB corrections
- For the 2 examples I gave :
 - V_{us} : new measurements for the strange Brs are needed!
 - In the LFV mode $\tau \rightarrow \mu \pi \pi$, the more model independent process is

 $\tau^- \rightarrow \mu^- \pi^0 \pi^0$: no loop induced process

but the only experimental bound from CLEO and weak $\sim 10^{-5}$ meed to be remeasured

• I hope this week in Krakow will allow us to make some progress towards a better understanding of hadronic τ decays!

6. Back-up

1.1 Test of New Physics : Vus

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element V_{us}
 - Fundamental parameter of the Standard Model Check unitarity of the first row of the CKM matrix:
 - Cabibbo Universality

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \stackrel{?}{=} 1$$
Negligible
(B decays)

- Look for *new physics*
 - ➢ In the Standard Model : W exchange → only V-A structure

1.3 Paths to V_{ud} and V_{us}

V _{ud}	$egin{array}{c} \mathbf{0^+} & ightarrow \mathbf{0^+} \ \pi^\pm ightarrow \pi^0 \mathrm{e} u_\mathrm{e} \end{array}$	$n \rightarrow pev_e$	$\pi o \ell v_{\ell}$
V _{us}	$K o \pi \ell \nu_\ell$	$\Lambda \rightarrow \mathbf{pe} v_{e}$	$K \to \ell v_{\ell}$

• From kaon, pion, baryon and nuclear decays

• From τ decays

V_{ud}		$ au ightarrow \pi u_{ au}$	$\tau \rightarrow h_{NS} \nu_{\tau}$
V _{us}	$\tau ightarrow K \pi_{\nu_{\tau}}$	$ au ightarrow \mathbf{K} v_{\tau}$	$ au ightarrow extbf{h}_{S} u_{ au}$ (inclusive)

BSM: sensitive to tree-level and loop effects of a large class of models

Look for new physics by comparing the extraction of V_{us} from different processes: helicity suppressed K_{µ2}, helicity allowed K_{I3}, hadronic τ decays

2.4 Comparison with ChPT

- Studying τ and K_{I3} decays \implies indirect searches of new physics, several possible high-precision tests:
 - \succ Extraction of V_{us}

Knowledge of the two form factors:

1.2 Determination of the $K\pi$ form factors

- $\overline{f}_{+}(t)$ accessible in K_{e3} and K_{µ3} decays
- $\overline{f}_0(t)$ only accessible in $K_{\mu3}$ (suppressed by m_l^2/M_K^2) + correlations difficult to measure
- Data from *Belle* and *BaBar* on $\tau \to K\pi v_{\tau}$ decays (*Belle II*, *Tau-Charm* soon!) Use them to constrain the form factors and especially \overline{f}_0

Hadronic matrix element: Crossed channel

$$\langle \mathbf{K}\pi | \ \overline{\mathbf{s}}\gamma_{\mu}\mathbf{u} | \mathbf{0} \rangle = \left[\left(p_{K} - p_{\pi} \right)_{\mu} + \frac{\Delta_{K\pi}}{s} \left(p_{K} + p_{\pi} \right)_{\mu} \right] f_{+}(s) - \frac{\Delta_{K\pi}}{s} \left(p_{K} + p_{\pi} \right)_{\mu} f_{0}(s)$$
with $s = q^{2} = (p_{K} + p_{\pi})^{2}$ vector scalar

3.1 K π form factors from $\tau \rightarrow K\pi\nu_{\tau}$ and K₁₃ decays

- Fit to the $\tau \rightarrow K\pi v_{\tau}$ decay data
 - from Belle [Epifanov et al'08] (BaBar?)

$$\begin{bmatrix} N_{events} \propto N_{tot} & b_w & \frac{1}{\Gamma_{K\pi}} \frac{d\Gamma_{K\pi}}{d\sqrt{s}} \\ Number of \\ events/bin \end{bmatrix}^2 \qquad \text{with}$$

$$\frac{d\Gamma_{K\pi}}{d\sqrt{s}} = \frac{G_F^2 m_\tau^3}{32\pi^3 s} C_K^2 S_{EW} \left| f_+(0) V_{us} \right|^2 \left(1 - \frac{s}{m_\tau^2} \right)^2 \left[\left(1 + \frac{2s}{m_\tau^2} \right) q_{K\pi}^3(s) \left| \bar{f}_+(s) \right|^2 + \frac{3\Delta_{K\pi}^2}{4s} q_{K\pi}(s) \left| \bar{f}_0(s) \right|^2 \right]$$

Possible combination with K_{I3} decay data fits Flavianet Kaon WG'10 ٠

$$\chi^{2} = \chi_{\tau}^{2} + \begin{pmatrix} \lambda_{+} - \lambda_{+}^{K_{13}} \\ \ln C - \ln C^{K_{13}} \end{pmatrix}^{T} V^{-1} \begin{pmatrix} \lambda_{+} - \lambda_{+}^{K_{13}} \\ \ln C - \ln C^{K_{13}} \end{pmatrix}$$

+ sum-rules

	$\tau \to K \pi \nu_{\tau} \& K_{\ell 3}$	$\tau \to K \pi \nu_{\tau} \& K_{\ell 3}$
	Belle	2 nd generation B factory
		(projected)
$\ln C$	0.20352 ± 0.00890	0.19880 ± 0.00498
$\lambda_0' imes 10^3$	13.824 ± 0.824	13.703 ± 0.521
$\tilde{m}_{K^*}[\text{MeV}]$	943.59 ± 0.58	943.76 ± 0.06
$ ilde{\Gamma}_{K^*}[{ m MeV}]$	67.064 ± 0.846	67.290 ± 0.088
$\tilde{m}_{K^{\ast'}}[{\rm MeV}]$	1392.2 ± 57.6	1361.7 ± 6.3
$\tilde{\Gamma}_{K^{st'}}[{ m MeV}]$	296.67 ± 160.28	254.62 ± 17.45
β	-0.0404 ± 0.0206	-0.0338 ± 0.0023
$\lambda'_+ imes 10^3$	25.621 ± 0.405	25.601 ± 0.277
$\lambda_+'' imes 10^3$	1.2221 ± 0.0183	1.2150 ± 0.0090
$\chi^2/d.o.f$	60.2/68	28.1/71

Results for the $\pi \pi$ vector form factor

$$\tilde{F}_V(s) = \frac{\tilde{M}_{\rho}^2 + \left(\alpha' e^{i\phi'} + \alpha'' e^{i\phi''}\right)s}{\tilde{M}_{\rho}^2 - s + \kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s) + \frac{1}{2}A_K(s)\right] - i\tilde{M}_{\rho}\tilde{\Gamma}_{\rho}(s)} - \frac{\alpha' e^{i\phi'}s}{D(\tilde{M}_{\rho'}, \tilde{\Gamma}_{\rho'})} - \frac{\alpha'' e^{i\phi''}s}{D(\tilde{M}_{\rho''}, \tilde{\Gamma}_{\rho''})}$$

	· · · · · · · · · · · · · · · · · · ·
$\lambda_V' imes 10^3$	36.7 ± 0.2
$\lambda_V'' imes 10^3$	3.12 ± 0.04
$\tilde{M}_{\rho}[\text{MeV}]$	833.9 ± 0.6
$\tilde{\Gamma}_{ ho}[\text{MeV}]$	198 ± 1
$\tilde{M}_{\rho'}[\text{MeV}]$	1497 ± 7
$\tilde{\Gamma}_{\rho'}[\text{MeV}]$	785 ± 51
$\tilde{M}_{\rho^{\prime\prime}}[\text{MeV}]$	1685 ± 30
$\tilde{\Gamma}_{\rho^{\prime\prime}}[\text{MeV}]$	800 ± 31
α'	0.173 ± 0.009
ϕ'	-0.98 ± 0.11
α''	0.23 ± 0.01
ϕ''	2.20 ± 0.05
$\chi^2/d.o.f$	38/52