Jets at RHIC What have we learned from jet reconstruction and correlation measurements?

Alice Ohlson Yale University

Jets at RHIC

- Hard-scattered partons fragment into collimated "jets" of hadrons
- By studying jets we can investigate interactions of the high-p_T partons with the Quark Gluon Plasma
- We look for...
 - Suppression of the number of jets (compared to p+p or p+A)
 - Modification of the p_T or angular distributions of jet fragments

High- p_T suppression

 Single-particle inclusive measurements

 \rightarrow suppression of high-p_T hadrons in central Au+Au events

- Correlations w.r.t. high-p_T hadrons
 - \rightarrow suppression of particles associated with jet peak

Jet Reconstruction Algorithms

- The goal: Find clusters of particles, determine the direction and energy of the original parton
- Several options: k_T, anti-k_T, Gaussian filter, etc.
- Main challenge: subtracting the combinatoric heavy ion background, accounting for fluctuations

Jet Spectra at RHIC

- For the first time \rightarrow Full jet reconstruction in a heavy ion environment
- Different methods of jet reconstruction, background subtraction, fakejet rejection

Jet R_{AA} at RHIC

Reconstructed jets demonstrate suppression

 Need to use similar techniques for direct comparison, further work is necessary to understand background fluctuations

Jet Spectra at the LHC

- ALICE, CMS, and ATLAS have produced jet spectra for 30 < p_T^{jet} < 300 GeV/c
- Jet R_{AA} shows suppression for wide range in jet p_T

Dihadron Correlations

Jets at RHIC -- Alice Ohlson

γ-hadron Correlations

- γ -jet pairs produced in $q+g \rightarrow q+\gamma$
- Photons do not lose energy in the medium, therefore $p_T^{photon} \approx p_T^{parton}$

PHENIX, arXiv:1212.3323 [nucl-ex] Accepted to PRL

Awayside hadron yields

 $I_{AA} = \frac{\text{yield in Au} + Au}{\text{yield in p} + p}$ $\xi = \ln(1/z_T)$ $z_T = p_T^{\text{hadron}}/p_T^{\text{photon}}$

- Modified fragmentation function
 in Au+Au compared to p+p
- In narrow cone $(|\Delta \phi \pi| < \pi/6)$: suppression $(I_{AA} < 1)$ of high- z_T hadrons, no corresponding enhancement at low z_T
- When integration region is expanded ($|\Delta \phi \pi| < \pi/2$), low-z_T enhancement is observed

high z_T

low z_T

15 July 2013

Jets at the LHC

• CMS result \rightarrow Energy is distributed to very wide angles $(\Delta R > 0.8 \sim \pi/4)$

- Similar conclusions for CMS A_J and PHENIX γ-jet measurements
- Where does the "missing" energy go?

Jet-hadron Correlations

 Jet-hadron correlations have increased kinematic reach compared to dihadron correlations, allow for more precise determination of parent parton energy

Jet-hadron Correlations

- Intentionally impose a bias towards unmodified trigger jets! (surface bias?)
 - $E_T > 6$ GeV in a single BEMC tower ($\Delta \phi \times \Delta \eta = 0.05 \times 0.05$)
 - Anti-k_T (R = 0.4) using tracks/towers with p_T > 2 GeV/c
- HT trigger requirement and constituent p_T cut
 - Reduce effects of background fluctuations
 - Comparison to p+p is more straightforward
- Trigger (nearside) jet population is highlybiased
 - Used to assign uncertainties to shape of background (v₂ and v₃) and trigger jet energy scale
- Recoil (awayside) jet fragmentation is unbiased

STAR, arXiv:1302.6184 [nucl-ex] Submitted to PRL

Awayside Gaussian Widths

- Awayside widths suggest jet broadening to large angles at low- p_T (but highly-dependent on assumed v_3 modulation)
- Further information is needed about v₂^{jet}, v₃^{jet} (possible correlation of jets with reaction plane / participant planes)...

STAR, arXiv:1302.6184 [nucl-ex] Submitted to PRL

Awayside Energy Balance

$$D_{AA}(p_T^{assoc}) = Y_{AuAu}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{AuAu} - Y_{pp}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{pp}$$

$$\Delta B = \sum_{p_T^{assoc} \text{ bins}} D_{AA}(p_T^{assoc})$$

 ΔB

+0.2

-0.2

+0.3

-0.3

+0.1

-0.8

-0.5

+1.0

-0.0

+1.2

-0.1

+2.3

-0.0

+1.9

-0.0

+0.3

-0.0

Uncertainties due to: detector effects v_2 and v_3 jet energy scale

Suppression of high- p_{T} associated hadron yield is in large part balanced by low- p_{T} enhancement.

From Qualitative Consistency to Quantitative Conclusions

Need to assess biases in measurements at RHIC and the LHC...

- Dihadron correlations: high- p_T hadron \rightarrow hard fragmentation
- γ-hadron correlations: no geometrical bias?
- Jet-hadron correlations: HT trigger and high- p_T constituent cut \rightarrow hard fragmentation
- CMS A_J: Two reconstructed jets with high energy
- Need to do the same measurements at each experiment
 - A_J at RHIC
 - Jet-hadron correlations at LHC

2+1 Correlations

 Select events containing pairs of back-to-back high-p_T hadrons (likely due to dijet production)

Investigate distributions of associated hadrons with respect to both trigger hadrons

- No significant difference between Au+Au and d+Au
- No significant difference between near-side and away-side.
- Are we sampling surface-biased/unmodified dijets? Or dijets in which both jets lose similar amounts of energy?

Asymmetric Triggers

- Still no large shape difference between near- and away-sides, or between Au+Au and d+Au.
- Energy imbalance indicates slight softening of awayside peak
- Compare/contrast to dihadron and jet-hadron results.

Jet-Hadron and 2+1 Correlations

• Require a high- p_T hadron ~180° away from reconstructed trigger jet

Jet-Hadron and 2+1 Correlations

• Select unmodified jets with $p_T^{hadron} > 4 \text{ GeV}/c$ requirement.

Jets at RHIC -- Alice Ohlson

Jet v₂ at STAR

Correlation between jet axis and event plane

- Jet v₂{FTPC EP} is non-zero
 - \rightarrow more jets reconstructed in-plane than out-of-plane
 - \rightarrow evidence of pathlength-dependence of parton energy loss
- Jet v₂ ≈ HT v₂ → bias towards unmodified jets largely driven by HT requirement

15 July 2013

Jets at RHIC -- Alice Ohlson

ATLAS, arXiv:1306.6469 [hep-ex] Submitted to PRL

- Jet v_2 measured for 45 < p_T^{jet} < 210 GeV/*c*, R = 0.2
- Also observed $v_2^{jet} > 0$
- Different kinematic range and biases than STAR measurement
 - \rightarrow different trend with p_T^{jet}

RHIC/LHC Complementarity

- RHIC + LHC can cover a huge kinematic range of jets...
 - ~5-10 GeV γ-jets in PHENIX
 - ~10-40 GeV reconstructed jets in STAR
 - ~30-100 GeV jets in ALICE
 - ~50-350 GeV jets in CMS/ATLAS
- STAR is working to improve their jet p_T spectrum measurement
 - Recent advancements in understanding the details of jet reconstruction
 - Similar methods as ALICE for direct comparison
 - A new high-statistics dataset → jets beyond 50 GeV
- sPHENIX upgrade will allow additional reach

Conclusions & Final Thoughts

- Complementary analyses demonstrate jet quenching at RHIC & LHC
 - Softening and broadening of jets which traverse the medium in heavy ion collisions compared to p+p collisions
- It is necessary to understand biases present in analyses
 - At RHIC energies, a p_T > 4 GeV/c hadron requirement selects mostly unmodified jets
 - What about at LHC energies?
- Necessary to do similar measurements with similar techniques among RHIC experiments and at the LHC
- Complementarity between RHIC and LHC measurements provide information about parton energy loss over a wide kinematic range

Jets

- Hard-scatterings occur in the early stages of the collision
- Recoiling partons fragment into clusters of hadrons, known as "jets."

Use jets as probes of the medium.

 Jets in p+p are well-described by pQCD

Jets at RHIC -- Alice Ohlson

Jet Reconstruction

- Anti-k_T algorithm sequential recombination [PLB 641 (2006) 57]
 - Start with high-p_T particles
 - For each pair of particles (*i*,*j*), calculate

 $d_{ij} = min(1/p_{Ti}^2, 1/p_{Tj}^2)((\Delta y)_{ij}^2 + (\Delta \phi)_{ij}^2)/R^2$

- If $d_{ij} < 1/p_{T_i}^2$, merge the particles, else call particle *i* a jet
- Repeat until all particles are clustered
- R is resolution parameter
 - \rightarrow characteristic jet radius

STAR (Solenoidal Tracker at RHIC)

Jet-Hadron correlations

Dijet Coincidence Rate

- Similar trigger jet population in Au+Au and p+p due to p_T cut and HT trigger requirements
- Compare recoil jet spectrum in Au+Au and p+p

Trigger Jet: R = 0.4 $p_{T,cut} = 2 \text{ GeV}/c$ $p_T^{jet} > 20 \text{ GeV}/c$

Recoil Jet: R = 0.4 $p_{T,cut} = 2 \text{ GeV}/c$

- Suppression of recoil jet in Au+Au
- Due to softening and/or broadening outside of jet cone
- Consistency between correlations and inclusive measurements.

- Dijet imbalance indicates slight softening of awayside peak
- Still no significant shape difference between near- and away-sides, or between Au+Au and d+Au.
- Compare/contrast to dihadron and jet-hadron results.

- "Jet v_2 " \rightarrow correlation between *reconstructed* jets and the reaction plane (or 2nd -order participant plane)
- "Jet v_2 " \neq "Jet flow"

Artificial Sources of Anisotropy

- Background Fluctuations and the Jet Energy Scale Background particles (with $p_T > 2 \text{ GeV}/c$) with significant v_2 are more likely to be clustered into the jet cone in-plane versus out-of-plane
 - \rightarrow more low-p_T jets reconstructed with a higher p_T
 - \rightarrow increased number of in-plane jets in a fixed reconstructed jet p_T range
- Biased Event Plane

Jet fragments included in event plane calculation \rightarrow event plane pulled towards jet

Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- \circ jet p_T calculated before embedding
- jet p_T calculated after embedding
- difference
- Artificial jet v_2 caused by background fluctuations is ~ 4%
- Subtract from measured jet v_2 values.

Jet - Event Plane bias

- Calculating the event plane at mid-rapidity leads to significant jet – event plane bias!
- Need to determine event plane at forward rapidities to measure jet v₂ at mid-rapidity...

Jet v_2 vs. Reconstructed Jet p_T

- Jet V_2 {FIFC} increases slightly with jet p
- Jet v_2 {FTPC} > Jet v_2 {ZDC-SMD}

→ In single-particle v_2 measurements, this difference is attributed to flow in participant plane vs. reaction plane, $v_2(PP) > v_2(RP)$ → Jet energy loss sensitive to geometry in participant frame?

Does the recoil jet hit the FTPC?

- For pThat > 10 GeV/c, in 2M events, < 10 partons point towards the η region covered by the FTPC
- For pThat > 15 GeV/c, in 2M events, 0 partons point towards the η region covered by the FTPC