

Roger Ruber Dept. of Physics and Astronomy Particle Physics Division

31-Oct-2013

UPPSALA

UNIVERSITET

Outline

This lecture

- technologies for a future linear collider
- highlights of related research

Sections

- 1. circular versus linear colliders
- 2. accelerating gradient
- 3. radio frequency power generation
- 4. R&D projects for a future linear collider

1: Particle Collider History

Collider **Fixed Target** Proton-Proton (2835 x 2835 bunches 101 Protons/bunch ACCUMULATOR Beam energy 7 TeV (7x1012 eV 1034 cm-2 s-1 Luminosity Bunch RING Crossing rate 40 MHz Proton Collisions = 107 - 109 Hz Parton (quark, gluon) TARGET Higgs Higgs Particle SUSY $E_{CM} = \sqrt{2 \left(E_{beam} mc^2 + m^2 c^4 \right)}$ $< E_{CM} = 2 \left(E_{beam} + mc^2 \right)$

Fi Outline

2. Cavities

1. Colliders

- 3. RF power
- 4. Projects

31-Oct-2013 Roger Ruber - Future Accelerators

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Hadron versus Lepton Colliders

hadron collider at the frontier of physics

- huge QCD background
- not all nucleon energy available in collision

lepton collider for precision physics

- well defined CM energy
- polarization possible

after LHC \rightarrow lepton collider

- energy determined by discoveries
- consensus E_{cm} ≥0.5 TeV

Cost of Circular & Linear Accelerators

UPPSALA UNIVERSITET

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Circular Collider

- $\Delta E_{turn} \sim (q^2 E^4/m^4 R)$
- cost ~ aR + b ΔE
- optimization: $R \sim E^2 \rightarrow cost \sim cE^2$

LEP200: ΔE ~ 3%; 3640 MV/turn

LHC: Bmag limited

31-Oct-2013Roger Ruber - Future Accelerators

Linear Collider

- E ~ L
- cost ~ aL

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Accelerator History

A question of

- linear vs circular
- hadron vs electron
- acceleration technology
 - DC, RF, wakefield

Projects/Ideas

- linear electron collider
- circular electron collider
- electron proton collider
- circular proton collider

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Electron – Proton Collider

- For e.g. deep inelastic scattering studies (strong and electro-weak interaction, the internal structure of the proton/neutron)
- use existing LHC for the proton beam
- new electron accelerator
 - in LHC tunnel, new ring on top of existing LHC ring
 - straight electron linac
 - re-circulating electron linac with energy recovery

IPAC13, 13th - 17th May 2013, Shanghai China

15

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Circular Collider Ideas

- TLEP (also LEP3)
- electron positron collider
- 240 GeV centre-of-mass
 - new 80km tunnel
- for
 - accurate Higgs measurements
- compared to linear expect
 - higher luminosity,
 - many interaction points,
 - lower cost (main cost will be the tunnel)

VLHC

- proton proton collider
- 33 TeV (HE-LHC)
 - in LHC tunnel
 - Bmag = 20T
- 80~100 TeV (VHE-LHC)
 - new 80km tunnel
 - Bmag = 16-20T
- main challenge: magnets
 - ongoing research

- 1. high energy \rightarrow high accelerating gradient
- 2. high luminosity \rightarrow high current & small beam size
- 3. efficient radio frequency power production
- 4. feasibility demonstration

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

2. Accelerating Gradient

LIKE THE WAVE PROPELS THE SURFER ELECTROMAGNETIC WAVES ACCELERATE PARTICLES

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Accelerating Gap and Gradient

Gap voltage required for acceleration

 cannot be DC, because no staging possible

 \boldsymbol{E}

В

• use cavity with RF field (Maxwell equations)

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t}\vec{B} \qquad \oint \vec{E} \cdot d\vec{s} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

- breakdown limit (vacuum, Cu surface, T_{room}) $24.67\sqrt{f} = E_c e^{-\frac{4.25}{E_c}}$ \rightarrow high E_c requires high f
- frequency f determines cavity shape

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Drift Tube Linear Accelerator Structure

Low velocity particles

- for velocity < 0.4 c (50 keV e⁻; 100 MeV p)
- standing wave
- drift tube size and spacing adapted to
 - RF frequency
 - particle speed

© 2007 Encyclopædia Britannica, Inc.

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

electric field

Drift Tube Linac: How It works

Courtesy E. Jensen

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Example of Drift Tube Linacs

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Disk-loaded Accelerating Structure

In free space,

electro-magnetic wave travels faster than particles

- \rightarrow couple wave to resonating structures
- \rightarrow particle velocity equal to phase velocity

Example shows standing wave structure (v_{aroup}=0) with

• π phase advance per cell

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Superconducting RF Cavities (SRF)

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Advantages Superconducting RF

Very low losses due to tiny surface resistance \rightarrow standing wave cavities with

low peak power requirements

- High efficiency
- Long pulse trains possible
- Favourable for feed-backs within the pulse train
- Low frequency
 - → large dimensions (larger tolerances) large aperture and small wakefields

 \Rightarrow Important implications for the design of the collider

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Record **59 MV/m** achieved with single cell cavity at 2K Limitations:

• Field Emission

Progress in SCRF

- due to high electric field around iris
- Quench
 - surface heating from dark current, or
 - magnetic field penetration at "Equator"
- Contamination
 - during assembly
 - \rightarrow improve surface treatment

Example 9 cell cavities in operation at DESY (FLASH/XFEL):

- R&D Status ~30-35 MV/m
- DESY XFEL requires <23.6> MV/m
- ILC requires <31.5> MV/m

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Normal Conducting Accelerator Structures

E_{acc} limited by breakdown RF-field • > 60 MV/m

Higher gradients than SCRF cavities, but requires

- very high frequency: >10 GHz
- very short pulse lengths: < 1µs
- high ohmic losses
 - → travelling wave (unlike standing wave in SCRF or low gradient NCRF)
- fill time $t_{fill} = \int 1/v_G dz$ order <100 ns (~ms for SCRF)

Outline

1. Colliders

2. Cavities

- 3. RF power
- 4. Projects

High Frequency Structures

CLIC type T18_vg2.4_disk

designed at CERN build by KEK tested at SLAC

 $E_{acc} = 106 \text{ MV/m}$

- 11.424 GHz
- 230 ns pulse length
- 10⁻⁶ breakdown rate (BDR)

Frequency	11.424	GHz
Cells	18+input+output	
Filling Time	36	ns
Length	29	cm
Iris Dia. a/λ	15.5~10.1	%
Group Velocity: v _g /c	2.61-1.02	%
S ₁₁ / S ₂₁	0.035/0.8	
Phase Advace Per Cell	2π/3	
Power Needed <e<sub>a>=100MV/m</e<sub>	55.5	MW

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

3. RF Power Source

UPPSALA UNIVERSITET

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Electromagnetic Waves

- static electron
 → electric field
 - moving electron → electromagnetic wave

→ static electric field

- + static magnetic field
- bunched electron beam
 → electromagnetic wave

isvr

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Klystron Microwave Amplifier

- vacuum tube amplifier by electron density bunching
- 200 MHz 20 GHz

Roger Ruber - Future Accelerators

<1.5 MW ave.; <150 MW peak</p>

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Two-beam Acceleration Concept

- 12 GHz modulated and high power drive beam
- RF power extraction in a special structure (PETS)
- \rightarrow only passive elements
- use RF power to accelerate main beam
- compress energy density

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Drive Beam Generation

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

4: Projects for a Future Linear Collider

NEAS COLLIDER

Outline

1. Colliders

2. Cavities

- 3. RF power
- 4. Projects

The ILC and CLIC

LHC should indicate which energy level is needed

ILC International Linear Collider CLIC Compact Linear Collider

- superconducting technology
- 1.3 GHz
- 31.5 MV/m
- E_{CM} = 500 GeV
- upgrade to 1 TeV

- normal conducting technology
- 12 GHz
- 100 MV/m
- E_{CM} = 3 TeV

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

ILC: The International Linear Collider

Baseline:

- 2 x 250 GeV superconducting linac
- 2x10³⁴ cm⁻²s⁻¹ (14 mrad X-angle)
- polarized electron photo-gun
- undulator positron source at 150 GeV
- 5 GeV damping rings (C=6.7 km)
- 4.5 km long beam-delivery system to make spot sizes of 640 x 5.7 nm

Parameter	Value
C.M. Energy	500 GeV
Peak luminosity	2x10 ³⁴ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse time duration	1 ms
Average beam current	9 mA (in pulse)
Average field gradient	31.5 MV/m
# 9-cell cavity	14,560
# cryomodule	1,680
# RF units	560

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Linear Collider Siting

- Where to build?
- Deep/shallow tunnel
- Geometry
 - Laser straight?
 - follow curvature?

S DAMPING RING

FIGURE 2.13. Geology and tunnel profiles for the three regional sites, showing the location of the major access shafts (tunnels for the Asian site). Top: the Americas site close to Fermilab. Middle: the Asian site in Japan. Bottom: the European site close to CERN.

CLIC: Compact Linear Collider

Outline

- 4. Projects

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

CTF3: CLIC Test Facility

- demonstration drive beam generation
 (fully loaded acceleration, frequency multiplication)
- evaluate beam stability & losses in deceleration
- develop power production & accelerating structures (damping, PETS on/off, beam dynamics effects)

Outline

1. Colliders

2. Cavities

3. RF power

 combiner ring bunch interleaving (delay loop bypass, instabilities)

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Two-beam Test Stand

UPPSALA

Two-beam Acceleration

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Acceleration as function of power is close to nominal

RF Waveform Distortion on Breakdown

UPPSALA UNIVERSITET

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

Break down

- Pulses with breakdowns not useful for acceleration (beam kick and instabilities)
- Low breakdown rate required (< 10⁻⁶) for useful operation

Beam Kick Measurements

- beam position: 10 μm, angle: 7 μrad
- kick position: 31 μm, angle: 11 μrad
- relative energy change from kick: 32x10⁻⁶ (see M. Johnson, CLIC Note 710, CERN-OPEN-2007-022)

270

210

240

330

300

Outline

- 1. Colliders
- 2. Cavities
- 3. RF power
- 4. Projects

RF Breakdown: a Reliability Issue

Conditioning required

- to reach nominal gradient
 but
- damage by excessive field
- Physics phenomena not yet completely understood!

Acknowledgements

For the contribution of material and advice, without which I would not have been able to make this presentation. My grateful thanks to

 Alex Andersson, Erik Adli, Erk Jensen, Hans Braun, Andrea Palaia, Daniel Schulte, Frank Tecker, Wilfrid Farabolini, Walter Wünsch, Akira Yamamoto and Volker Ziemann

Some illustrations and photos courtesy

• CERN, KEK and Symmetry Magazine