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Outline 

This lecture 

• technologies for a future linear collider 

• highlights of related research 

 

Sections 

1. circular versus linear colliders 

2. accelerating gradient 

3. radio frequency power generation 

4. R&D projects for a future linear collider 
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Fixed Target Collider 

1: Particle Collider History 
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Hadron versus Lepton Colliders 

hadron collider at the frontier of physics 

 

 

– huge QCD background 

– not all nucleon energy available 

in collision 

 

lepton collider for precision physics 

 

 

– well defined CM energy 

– polarization possible 

 

after LHC → lepton collider 

– energy determined by discoveries 

– consensus Ecm ≥0.5 TeV 

p p 

e+ e- 
Simulation of HIGGS production e+e– → Z H 

     Z → e+e–, H → bb 
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Circular versus Linear Collider 

Circular Collider 
many magnets, few cavities → need strong field for smaller ring 

high energy → high synchrotron radiation losses (E4/R) 

high bunch repetition rate → high luminosity 

Linear Collider 
few magnets, many cavities → need efficient RF power production 

higher gradient → shorter linac 

single pass → need small cross-section for high luminosity: 

(exceptional beam quality, alignment and stabilization) 

source main linac 

N 

S 

N 

S 

accelerating cavities 

5 Roger Ruber - Future Accelerators 



 Outline 

1. Colliders 

2. Cavities 

3. RF power 

4. Projects 

31-Oct-2013 

Cost of Circular & Linear Accelerators 

Circular Collider 

• ΔEturn ~ (q2E4/m4R) 

• cost ~ aR + b ΔE 

• optimization: R~E2 → cost ~ cE2 

LEP200: ΔE ~ 3%; 3640 MV/turn 

LHC: Bmag limited 

Linear Collider 

• E ~ L 

• cost ~ aL 

c
o

s
t 

energy 

Circular 

Collider 

Linear 

Collider 
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Accelerator History 

A question of  

• linear vs circular 

• hadron vs electron 

• acceleration technology 

• DC, RF, wakefield 

 

Projects/Ideas 

• linear electron collider 

• circular electron collider 

• electron – proton collider 

• circular proton collider 
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Electron – Proton Collider 

For e.g. deep inelastic scattering studies  

(strong and electro-weak interaction, 

the internal structure of the proton/neutron) 

• use existing LHC for the proton beam 

• new electron accelerator 

• in LHC tunnel,  

new ring on top of  

existing LHC ring 

• straight electron linac 

• re-circulating electron  

linac with energy  

recovery 

8 Roger Ruber - Future Accelerators 31-Oct-2013 



 Outline 

1. Colliders 

2. Cavities 

3. RF power 

4. Projects 

Circular Collider Ideas 

TLEP (also LEP3) 

• electron – positron collider 

• 240 GeV centre-of-mass 

• new 80km tunnel 

• for 

• accurate Higgs measurements 

• compared to linear expect 

• higher luminosity,  

• many interaction points,  

• lower cost (main cost will be the 

tunnel) 

 

 

VLHC 

• proton – proton collider 

• 33 TeV (HE-LHC) 

• in LHC tunnel 

• Bmag = 20T 

• 80~100 TeV (VHE-LHC) 

• new 80km tunnel  

• Bmag = 16-20T 

• main challenge: magnets 

• ongoing research 
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Linear Collider R&D 

1. high energy → high accelerating gradient 

2. high luminosity → high current & small beam size 

3. efficient radio frequency power production 

4. feasibility demonstration 

 

e+ Linac 

Interaction Point  

with Detector 

e- Linac  e+ source  e- source 

RF power 

Source 

RF power 

Source 

accelerating cavities accelerating cavities 
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2. Accelerating Gradient 
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Accelerating Gap and Gradient 

Gap voltage required for acceleration 

• cannot be DC, 
because no staging possible 

 

• use cavity with RF field (Maxwell equations) 

 

 

• breakdown limit 
(vacuum, Cu surface, Troom) 
 
 
→ high Ec requires high f 
 

• frequency f determines cavity shape 
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Drift Tube Linear Accelerator Structure 

Low velocity particles 

• for velocity < 0.4 c (50 keV e-; 100 MeV p) 

• standing wave 

• drift tube size and spacing adapted to  

– RF frequency 

– particle speed 
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Drift Tube Linac: How It works 

electric field 

Courtesy E. Jensen 
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Example of Drift Tube Linacs 
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RF power 

source 

RF 

load 

Electric field 

d 

Particle bunch 

Disk-loaded Accelerating Structure 

In free space, 

electro-magnetic wave travels faster than particles 

→ couple wave to resonating structures 

→ particle velocity equal to phase velocity 

 

Example shows standing wave structure (vgroup=0) with 

• π phase advance per cell 
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Superconducting RF Cavities (SRF) 

© Cornell University 
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Advantages Superconducting RF 

Very low losses due to tiny surface resistance 

→ standing wave cavities with 

     low peak power requirements 

 

• High efficiency 

• Long pulse trains possible 

• Favourable for feed-backs within the pulse train 

 

• Low frequency 

→ large dimensions (larger tolerances) 

     large aperture and small wakefields 

 Important implications for the design of the collider 
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Progress in SCRF 

Record 59 MV/m achieved with single cell cavity at 2K 

Limitations: 

• Field Emission 

– due to high electric field around iris 

• Quench 

– surface heating from dark current, or 

– magnetic field penetration at “Equator” 

• Contamination 

– during assembly  

→ improve surface treatment 

Example 9 cell cavities in operation 

at DESY (FLASH/XFEL): 

– R&D Status ~30-35 MV/m 

– DESY XFEL requires <23.6> MV/m 

– ILC requires <31.5> MV/m 
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Normal Conducting Accelerator Structures 

Eacc limited by breakdown RF-field 

• > 60 MV/m 

 

Higher gradients than SCRF cavities, 

but requires 

• very high frequency: >10 GHz 

• very short pulse lengths: < 1μs 

 

• high ohmic losses 

→ travelling wave 

    (unlike standing wave in SCRF 

     or low gradient NCRF) 

 

• fill time tfill =  1/vG dz 

order <100 ns (~ms for SCRF)  
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High Frequency Structures 

CLIC type 

T18_vg2.4_disk 

 

designed at CERN 

build by KEK 

tested at SLAC 

 

Eacc = 106 MV/m 

• 11.424 GHz 

• 230 ns pulse length 

• 10-6 breakdown rate (BDR) 

Frequency 11.424 GHz 

Cells 18+input+output 

Filling Time 36 ns 

Length 29 cm 

Iris Dia. a/λ 15.5~10.1 % 

Group Velocity: vg/c 2.61-1.02 % 

S11/ S21 0.035/0.8 

Phase Advace Per Cell 2π/3 

Power Needed <Ea>=100MV/m 55.5 MW 
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3. RF Power Source 
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Electromagnetic Waves 

• static electron 

→ electric field 

 

• moving electron 

→ electromagnetic 

     wave 

 

• constant electron beam 

→ static electric field 

  + static magnetic field 

 

• bunched electron beam 

→ electromagnetic wave 
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Klystron Microwave Amplifier 

• vacuum tube amplifier by 

electron density bunching 

• 200 MHz – 20 GHz 

• <1.5 MW ave.; <150 MW peak 

Intermediate  

Cavities 

Gun 

Input  
Cavity 

Collector 

Output  
Cavity 

Magnet 

Output 

Window 

electron bunching 
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Two-beam Acceleration Concept 

• 12 GHz modulated and 

high power drive beam 

• RF power extraction 

in a special structure 

(PETS) 

→ only passive elements 

• use RF power to 

accelerate main beam 

• compress energy density 

drive beam main beam 
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Drive-beam Generation by Beam Gymnastics 
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Drive Beam Generation 

Courtesy A. Andersson 
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4: Projects for a Future Linear Collider 
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Basic Layout of a Linear Collider 
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The ILC and CLIC 

ILC International Linear Collider 

• superconducting technology 

• 1.3 GHz 

• 31.5 MV/m 

• ECM = 500 GeV 

• upgrade to 1 TeV 

CLIC Compact Linear Collider 

• normal conducting technology 

• 12 GHz 

• 100 MV/m 

• ECM = 3 TeV 

LHC should indicate which energy level is needed 

Courtesy Sandbox Studio / interactions.org 

ILC 

1 TeV 

35km 

LHC 

7 TeV 

27km 

TevaTron 

2 TeV 

6.3km 
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ILC: The International Linear Collider 

Baseline: 

• 2 x 250 GeV superconducting linac 

• 2x1034 cm-2s-1 (14 mrad X-angle) 

• polarized electron photo-gun 

• undulator positron source at 150 GeV 

• 5 GeV damping rings (C=6.7 km)  

• 4.5 km long beam-delivery system  

to make spot sizes of 640 x 5.7 nm  

 

Parameter Value 

C.M.  Energy 500 GeV 

Peak luminosity 2x1034 cm-2s-1 

Beam Rep. rate 5 Hz 

Pulse time duration 1 ms 

Average beam current  9 mA  (in pulse) 

Average field gradient 31.5 MV/m 

# 9-cell cavity 14,560 

# cryomodule 1,680 

# RF units 560 

31 km 
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Linear Collider Siting 

• Where to build? 

 

• Deep/shallow 

tunnel 

 

• Geometry 

– Laser straight? 

– follow curvature? 
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CLIC: Compact Linear Collider 

Φ4.5m tunnel 

Main Linac 

C.M.  Energy 3 TeV 

Peak luminosity 2x1034 cm-2s-1 

Beam Rep. rate 50 Hz 

Pulse time duration 156 ns 

Average field gradient  100 MV/m 

# accelerating cavities 2 x 71,548 
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3.5A – 150 MeV 
1.5GHz – 1.4µs 

28A – 150 MeV 
12GHz – 140ns 

CTF3: CLIC Test Facility 

• demonstration drive beam generation 

(fully loaded acceleration, frequency multiplication) 

• evaluate beam stability & losses in deceleration 

• develop power production & accelerating structures 

(damping, PETS on/off, beam dynamics effects) 

TBTS 
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Demonstration Beam Re-combination 

• delay loop (DL) gap creation 

(for CR extraction) and 

doubling frequency + intensity 

 

• combiner ring bunch interleaving 

(delay loop bypass, instabilities) 

 
140 ns 

before DL 

in DL 

after DL 

Beam Current 

Combiner Ring 

12 A 

1st 

turn 

2nd 

turn 

3rd 

turn 

4th 

turn 

3 A 

3rd Oct. 2008 
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Demonstration Two-beam Acceleration 

Experimental area 

Spectrometers and 

beam dumps 

Construction supported by the 

Swedish Research Council and the  

Knut and Alice Wallenberg Foundation 

Two-beam Test Stand 
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Two-beam Test Stand 

experimental area 

drive beam probe beam ©
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Acceleration as function of power is 

close to nominal 
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• Pulses with breakdowns not useful for acceleration 

(beam kick and instabilities) 

• Low breakdown rate required (< 10-6) for useful operation 

RF Waveform Distortion on Breakdown 

S. Fukuda/KEK 
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Beam Kick Measurements 

Breakdown kick 

Two chicanes to remove breakdown currents  

BPM5: x
5 

BPM 1: x
1 

BPM2: x
2 

BPM 3: x
3 

BPM 4: x
4 

Dipole 

Incoming beam 

Estimated error 

• beam position: 10 μm, angle: 7 μrad 

• kick position: 31 μm, angle: 11 μrad 

• relative energy change from kick: 32x10-6 

(see M. Johnson, CLIC Note 710, CERN-OPEN-2007-022) 

MTV
 

A. Palaia 
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RF Breakdown: a Reliability Issue 

Conditioning required 

• to reach nominal gradient 

but 

• damage by excessive field 

 

Physics phenomena not yet 

completely understood! 

1 mm 

© CERN 
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