

Latest tracking results from CEA

A. Chancé, B. Dalena, J. Payet

Thanks to R. De Maria & M. Giovannozzi

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Field Quality Study

- LHC v3.1b @ collision (round beam with $\beta^* = 15$ cm)
- Beam normalized emittances 3.75 10⁻⁶ m.rad
- Momentum : 2.7 10⁻⁴, (max allowed 2 10⁻³)
- Search for the error set which gives the largest average of the DA
- Standard errors and corrections for the arcs
- IT errors : slhc/errors/IT_errortable_v2
- Corrections b3, b4, b5, b6, a2, a3, a4, a5, a6 turned on for the IT and D1 (corr_tripD1_v1 S. Fartoukh; M. Giovannozzi, S. Fartoukh, R. De Maria, WEPEA048, IPAC'13)
- The error amplitudes can be divided by 2, at most
- DA for 11 angles (0,π/2), 13 amplitudes (10σ, 22σ, step 1σ), 60 particles, 100000 turns, 60 error seeds

Reduction of the b7, b8, a7, a8 harmonics only

The reduction of b7, b8, a7, a8 only is not sufficient to reach the blue curve (we gain ~1-1.5σ).

Task.2.3 meeting 07/06/2013

Reduction of the a7 harmonic

• The contribution to the DA of a7 at 50% alone is very small.

Reduction of the a8 harmonic

• The contribution to the DA of a8 at 50% alone is visible at large angles.

Reduction of the b8 harmonic

• The contribution to the DA of b8 at 50% alone is small.

Reduction of the b7 harmonic

• The gain on the average DA given by b7 at 50% alone is the most important.

Reduction of the b7, b8, a7, a8 harmonics

- The gain on the average DA is about 1σ with b8, a8, b7, a7 at 50%.
- b7 alone at 50% gives the most visible effect on the average DA with respect to the other ones.

Reduction of the b7, b8 harmonics

• The combination of b7 and b8 at 50% gives about half of the gain obtained with b7, b8, a7, a8.

Reduction of the b7, a7 harmonics

- The combination of b7 and a7 at 50% gives about the same gain as b7 and b8 together.
- The combination of the harmonics adds not linearly.

Error components of the b7 harmonics

- $b_7 = \xi_U \frac{0.168}{1.5} + \xi_R 0.168$, where U applies to all magnets of a given class, R changes from magnet to magnet for a given seed.
- There is no clear difference between the U and R contribution, moreover each of them is very similar to their combination (...?...)

Error components of the a7 harmonics

- $a_7 = \xi_U \frac{0.168}{1.5} + \xi_R 0.168$
- Same behavior as before

Error components of the b8 harmonics

- $b_8 = \xi_U \frac{0.128}{1.5} + \xi_R 0.128$
- Same behavior as before

Error components of the a8 harmonics

- $a_8 = \xi_U \frac{0.128}{1.5} + \xi_R 0.128$
- Same behavior as before

Summary

- The reduction of the harmonics b7,a7,b8,a8 up to 50% together gives a gain of ~1 σ on the average DA.
- b7 alone seems to give the most important contribution to the DA gain but the addition of the harmonics enhances their singular behavior .
- The contribution of the U and the R components alone (b8,a8,b7,a7) on the DA is the same and is the same of their total as well.

To do

- Determination of the minimum reduction to these multipole leading to a sensible increase of the DA (0.25σ , 0.5σ ,...?)
- Check the IT_errortable_v3
- Switch to HLLHCV1.0 lattice

cern.ch