Ratios of Higgs Cross Sections at 14 TeV and 8 TeV

Jonathan Walsh, UC Berkeley

work with Iain Stewart, Frank Tackmann, and Saba Zuberi - 1307.1808

with many thanks to Frank Tackmann for providing runs for this talk

Demands for Precision QCD in Higgs Cross Sections

"The systematic uncertainties that have the largest impact on the sensitivity of the search are the theoretical uncertainties associated with the signal."

Demands for Precision QCD in Higgs Cross Sections

Leading systematic uncertainties

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10) -
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15) -
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

dominant contribution:

perturbative QCD scale uncertainties

$$\delta \sigma_{0 \, \text{jet}} = 16.5\%$$

$$\delta \sigma_{1\,\text{jet}} = 30\%$$

ATLAS-CONF-2012-158

"The systematic uncertainties that have the largest impact on the sensitivity of the search are the theoretical uncertainties associated with the signal."

from ATLAS, 1206.0756

Overview of the H + 0-jet Calculation

Make a prediction for the resummed+matched (NNLL' + NNLO) H + 0-jet cross section:

Use a factorization theorem for the cross section:

- Global/local veto bootstrap in each function
- New calculations in SCET

Focus on uncertainty estimates on the result:

- Makes the prediction robust
- Many scales, sources of uncertainty

Jet algorithm clustering effects are theoretically interesting, phenomenologically important

H + 0-jet Cross Section

H + 0-jet Results

rates with uncertainties:

R = 0.4:

$$p_T^{\text{cut}} = 25 \text{ GeV} : \sigma_0 = 12.67 \pm 1.22(9.6\%)$$

 $p_T^{\text{cut}} = 30 \text{ GeV} : \sigma_0 = 14.09 \pm 0.96(6.8\%)$

R = 0.5:

$$p_T^{\text{cut}} = 25 \text{ GeV} : \sigma_0 = 12.40 \pm 1.12(9.0\%)$$

 $p_T^{\text{cut}} = 30 \text{ GeV} : \sigma_0 = 13.85 \pm 0.87(6.3\%)$

compare to 17%!

H + 0-jet Results

Inclusive 1-jet Cross Section, 0-jet Efficiency

Recent Work on (p_) Jet Vetoes

H + 0 jets	 Banfi, Monni, Salam, Zanderighi - 1203.5773, 1206.4996, 1308.4634 (also Z + 0 jets)
	 Becher, Neubert, Rothen - 1205.3806, 1307.0025
	 Stewart, Tackmann, Walsh, Zuberi - 1206.4312, 1307.1808
H + 1 jet	 Liu, Petriello - 1210.1906, 1303.4405
	 Liu, Petriello, Tackmann, Walsh (H + 0/1-jet combination) - ongoing
H + 2 jets	Gangal, Tackmann (fixed order uncertainties) - 1302.5437
VH + 0 jets	• Li, Li, Shao - 1309.5015
clustering effects	 Alioli, Walsh - ongoing

thresholds governed by two considerations:

poorly measured jets at low p_T

< p_T cut <

poor background discrimination

Jet Veto Thresholds

thresholds governed by two considerations:

poorly measured jets at low p⊤

< p_T cut <

poor background discrimination

Bin Migration Effects from Pileup: Uncertainties

covariance matrices resummed and fixed order parts

 $C(\{\sigma_{\geq 0}, \sigma_0, \sigma_{\geq 1}\}) = C_{\mu} + C_{\text{resum}},$

$$C_{\mu} = \begin{pmatrix} \Delta_{\text{tot}}^{2} & \Delta_{\text{tot}} \Delta_{\mu 0} & \Delta_{\text{tot}} \Delta_{\mu \ge 1} \\ \Delta_{\text{tot}} \Delta_{\mu 0} & \Delta_{\mu 0}^{2} & \Delta_{\mu 0} \Delta_{\mu \ge 1} \\ \Delta_{\text{tot}} \Delta_{\mu \ge 1} & \Delta_{\mu 0} \Delta_{\mu \ge 1} & \Delta_{\mu \ge 1}^{2} \end{pmatrix}$$
$$C_{\text{resum}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{\text{resum}}^{2} & -\Delta_{\text{resum}}^{2} \\ 0 & -\Delta_{\text{resum}}^{2} & \Delta_{\text{resum}}^{2} \end{pmatrix},$$

allows for control over correlations between jet bins

pileup corrections are:

purely uncorrelated
 anti-correlated between jet bins

$$C_{\text{pileup}}(\sigma_0, \sigma_{\geq 1}) = \begin{pmatrix} \Delta_{\text{pu}}^2 & -\Delta_{\text{pu}}^2 \\ -\Delta_{\text{pu}}^2 & \Delta_{\text{pu}}^2 \end{pmatrix}$$

threshold and pileup jet effects have separate kinematic dependence, e.g.: on veto scale, steepness of 0-jet rate

would be interesting to see the size of these terms at LHC8, LHC14, hi lumi LHC can be estimated from MC (for theorists)

Ratios of Cross Sections

Can we probe veto threshold effects more sensitively with ratios of rates?

pileup, luminosities, higher order corrections

Ratios of Cross Sections

Can we probe veto threshold effects more sensitively with ratios of rates?

pileup, luminosities, higher order corrections

scaled ratio of [14 TeV] / [8 TeV]

Ratios of Cross Sections

Conclusions

- Higgs measurements at LHC14 expand the precision program
- Veto thresholds, pileup dependence are interesting issues
 - Can integrate uncertainties with theory predictions
 - Drell-Yan a good testing ground for some of these effects, although higher order corrections much smaller
- Can we understand gg fusion contamination of VBF analysis by comparing 14, 8 TeV measurements?