

QCD Tools for LHC Physics: From 8 to 14 TeV. What is needed and why? November 15th, 2013 Markus Klute (MIT)

Higgs Coupling Measurements at 8 and 14 TeV

First three year of the LHC

The Large Hadron Collider (LHC) at CERN, Switzerland

The Large Hadron Collider (LHC) at CERN, Switzerland

Higgs production and decay

m_н = 125 GeV, 8 TeV

Process	Diagram	Cross section [fb]	Unc. [%]
gluon-gluon fusion	10000000 Hap	19520	15
vector boson fusion	R S S S S S S S S S S S S S S S S S S S	1578	3
WН	WIT AND H	697	4
ZH	apper start in the	394	5
ttH	100 10000000 10000000 10000000 10000000 1000000	130	15

<mark>тн = 125 GeV</mark>		
Decay	BR [%]	Unc. [%]
bb	57.7	3.3
тт	6.32	5.7
сс	2.91	12.2
μμ	0.022	6.0
ww	21.5	4.3
99	8.57	10.2
ZZ	2.64	4.3
YY	0.23	5.0
Zγ	0.15	9.0
Г <mark>Н [M</mark> eV]	4.07	4.0

* uncertainties need improvements for future precision measurements

Status of Higgs physics program

Channel	ATLAS Lumi [1/fb]	CMS Lumi [1/fb]	Specialty	Inclusive signature	σ Obs. (Exp.)	mass [GeV]	Signal Strength µ	Spin/ Parity	
	4 6+20 7	5 1+10 6	mass,	1 lontons	6.6 (4.4)	124.3 ±0.6 (stat) ±0.5 (sys)	1.5 ± 0.4	\checkmark	
	4.0+20.7	5.1+19.0	spin/parity	4 100115	6.7 (7.2)	125.8 ±0.5 (stat) ±0.2 (sys)	0.91+0.30-0.24	\checkmark	
	4 0 . 00 7	4 0 : 40 5	cross	2 leptons.	3.8 (3.7)	consistent	0.99+0.31-0.32	\checkmark	
$ H \rightarrow WW \rightarrow 2I2v$	4.6+20.7	4.9+19.5	section, coupling	MET	4.0 (5.1)	consistent	0.76 ± 0.21	\checkmark	
11 - 3 you	4.8+20.7	E 4140 G	mass,	two photopo	7.4 (4.3)	126.8 ±0.2 (stat) ±0.7 (sys)	1.55+0.33-0.28	\checkmark	
η → γγ		5.1+19.0	couplings	two photons	3.2 (4.2)	125.4 ±0.5 (stat) ±0.6 (sys)	0.78+0.28-0.26	-	
	4 7:00 0	5 0 4 0 0	coupling to	A In Sector	-	consistent	0.2+0.7-0.6	-	
H → bb	4.7+20.3	5.0+19.0	fermions	two d-jets	2.1 (2.1)	consistent	1.0 ± 0.4	-	
Η → ττ	1 6+12 0	1 0+10 1	couplings	hadronic	1.1 (1.7)	consistent	0.8 ± 0.7	-	
	4.6+13.0	4.6+13.0	4.6+13.0	4.9719.4	to leptons	leptons, MET	<mark>3</mark> (2.6)	120+9-7	1.1 ± 0.4

Status of Higgs studies at CMS

Fantastic progress since discovery July 2012

- Observation in three bosonic channels
- Evidence for fermion couplings
- Precision mass measurement
- Spin determined
- Looks more and more like the SM Higgs boson
- No evidence for non-SM decays
- No evidence for additional Higgs boson

Summary of the Higgs boson properties

- Mass
 - M = 125.7 ± 0.3 ± 0.3 GeV
 - 0.5% precision
- Signal strength
 - $\mu = 0.80 \pm 0.14$
- Spin/CP
 - J^{CP} = 0⁺⁺ (SM-like Higgs boson) preferred
 - 0⁺⁻ (2⁺⁺) disfavored

Discovery opened a new era of Higgs precision measurements

Status of Higgs studies at ATLAS

Fantastic progress since discovery July 2012

- Observation in three bosonic channels
- Precision mass measurement
- Spin determined
- Looks more and more like the SM Higgs boson
- No evidence for non-SM decays
- No evidence for additional Higgs boson

Summary of the Higgs boson properties

- Mass
 - M = 125.5 ± 0.2 ± 0.6 GeV
 - 0.5% precision
- Signal strength
 - $\mu = 1.30 \pm 0.20$
- Spin/CP
 - J^{CP} = 0⁺⁺ (SM-like Higgs boson) preferred
 - 0⁺⁻ (2⁺⁺) disfavored

Discovery opened a new era of Higgs precision measurements

Higgs signal strength

Sensitive Higgs channels

	untagged	jet-tag	VBF	VH	ttH
Η → γγ	used				
H → WW → 2l2v					
H → ZZ → 4I		possible			
H → bb					
Н → тт					
H → Zγ					
Η → μμ					
H → invisible					

Measure rate of Higgs events with different production and decay combinations.

Cross-contamination of production and decay channels in categories.

Sensitive Higgs channels

Measure rate of Higgs events with different production and decay combinations.

Cross-contamination of production and decay channels in categories.

Coupling "Measurements"

Investigate the consistency of the "new scalar boson" with the SM Higgs boson.

Assume the observed signal stems from one narrow resonance.

$$(\sigma \cdot BR) (ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

Parametrize deviations w.r.t. the SM in production and decay. This implies precise knowledge of the SM Higgs. Not considered are BSM acceptance effects.

 $(\sigma \cdot \mathrm{BR}) (\mathrm{gg} \to \mathrm{H} \to \gamma \gamma) = \sigma_{\mathrm{SM}} (\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}} (\mathrm{H} \to \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\mathrm{H}}^2} \qquad \kappa_{H}^2 = \sum_{X} \kappa_{X}^2 \frac{\mathrm{BR}_{\mathrm{SM}} (H \to X)}{1 - \mathrm{BR}_{\mathrm{BSM}}}$

Benchmarks fits and parameter choices

Probe interesting BSM physics scenarios directly in limited dataset

- one common scale factor
- scale vector and fermion coupling

CMS Pieliminary

SM Higgs

0.5

95% CL

- custodial symmetry
- new physics in loops
- BSM Higgs decays

Ť

2

1.5

0.5

0

Yukawa

τ

sector

Markus Klute

. . .

1.6

1.8

ĸγ

Gauge sector

Mixed

sector

Loops (y, g) are

sensitive to BSM

contributions.

Benchmarks fits and parameter choices

General coupling fit

Significant progress in ttH channel in CMS

Potential for future LHC couplings fits

Based on parametric simulation

$L(fb^{-1})$	$H \rightarrow \gamma \gamma$	$H \rightarrow WW$	$H \rightarrow ZZ$	$H \rightarrow bb$	$H\to\tau\tau$	$H \rightarrow Z\gamma$	$H \rightarrow inv.$
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[17, 28]
3000	[4, 8]	[4, 7]	[4,7]	[5,7]	[5, 8]	[20, 24]	[6, 17]

Assumptions on systematic uncertainties Scenario 1: no change Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

Extrapolated from 2011/12 results

Higgs Boson coupling fits

 κ_g , κ_Y , κ_{ZY} : loop diagrams \rightarrow allow potential new physics

vector bosons **CMS** Projection **K**_W, **K**_Z: up- and down-type quarks Kt, Kb: Expected uncertainties on 3000 fb⁻¹ at is = 14 TeV Scenario 1 charged leptons **Κ**_T, **Κ**_μ: Higgs boson couplings 3000 fb⁻¹ at is = 14 TeV Scenario 2 total width from sum of partial widths Ky κ_w alternatively: κ_z κ_g $\Gamma_{\rm tot} = \sum \Gamma_{ii} + \Gamma_{\rm BSM}$ $\kappa_{\rm b}$ $BR_{BSM} = \Gamma_{BSM} / \Gamma_{tot}$ ĸ κ_{τ} assumption here κ_W , $\kappa_Z < 1$ 0.00 0.05 0.10 0.15 expected uncertainty **CMS** Projection

	$L(fb^{-1})$	Ky	κw	κ _Z	Kg	кb	κ _t	κ_{τ}	KZY	κμ	
	300	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]	
	3000	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]	
		(couplin	owmass Whitepap	er for CMS	- http://arxiv	.org/abs/1307.7	7135			
Μ	arkus Klute	factor of	of ~2 in	nprover	nent fro	om HL-LH	IC				19

Theoretical uncertainties

To test the importance of theoretical uncertainties we show the effect of removing them.

Theoretical uncertainties dominated by QCD scale and PDF uncertainties. Uncertainty on BR and acceptance uncertainties become relevant at few % precision.

Handbook of LHC Higgs Cross Sections: 3. Higgs Properties - http://arxiv.org/abs/1307.1347

Comparison of ATLAS and CMS

$L(fb^{-1})$	Exp.	$\gamma\gamma$	WW	ZZ	bb	au au	$Z\gamma$	$\mu\mu$
300	ATLAS	[9, 14]	[8, 13]	[6, 12]	N/a	[16, 22]	[145, 147]	[40, 42]
	CMS	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40, 42]
3000	ATLAS	[4, 10]	[5, 9]	[4, 10]	N/a	[12, 19]	[54, 57]	[12, 15]
	CMS	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14, 20]

Uncertainty on signal strength

- Ranges [x,y] are not directly comparable
- ATLAS
 - [no theory uncertainty, Scenario 1]
- CMS
 - [Scenario 2, Scenario 1]

Overall reasonable agreement, but

- ATLAS does not include H → bb mode
- CMS outperforms ATLAS H → TT mode
- Large differences in $H \rightarrow Z\gamma$ mode due to photon id

Comparison with ATLAS and CMS

$L(fb^{-1})$	Exp.	κ_{γ}	κ_W	κ_Z	κ_g	к _b	κ_t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$
300	ATLAS	[8,13]	[6, 8]	[7, 8]	[8, 11]	N/a	[20, 22]	[13, 18]	[78, 79]	[21, 23]
	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]
3000	ATLAS	[5, 9]	[4, 6]	[4, 6]	[5, 7]	N/a	[8, 10]	[10, 15]	[29, 30]	[8, 11]
	CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]

Large differences in fits for coupling strength

 ATLAS connects Kτ with Kb to overcome H → bb mode, but H → ττ then becomes overall limitation in constraining total width.

$$\kappa_H^2 = \sum_X \kappa_X^2 \mathrm{BR}_{\mathrm{SM}}(H \to X)$$

$L(fb^{-1})$	Exp.	$\kappa_g \cdot \kappa_Z / \kappa_H$	$\kappa_{\gamma}/\kappa_{Z}$	κ_W/κ_Z	κ_b/κ_Z	κ_{τ}/κ_Z	κ_Z/κ_g	κ_t/κ_g	κ_{μ}/κ_{Z}	$\kappa_{Z\gamma}/\kappa_Z$
300	ATLAS	[3, 6]	[5,11]	[4,5]	N/a	[11, 13]	[11, 12]	[17, 18]	[20, 22]	[78, 78]
	CMS	[4, 6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13, 14]	[22,23]	[40, 42]
3000	ATLAS	[2,5]	[2,7]	[2,3]	N/a	[7,10]	[5,6]	[6,7]	[6,9]	[29, 30]
	CMS	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12, 12]

Conclusion

- Comprehensive set of Higgs coupling fits performed on Run I (7 & 8 TeV) dataset by ATLAS and CMS
 - No significant deviation observed
 - Measurements mostly limited by statistical uncertainties
- Large program for Higgs coupling measurements in Run II (13-14 TeV) to stay ahead of systematical uncertainties
 - Models need to be advanced
 - Theoretical (scale, α_s, and PDF) uncertainties will become dominant
 - Experimental challenges due to large pileup and detector longevity effects

