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Outline

o Parton shower event generators, parton shower types
o Improving the splitting kernels
o Status of different parton showers

o Open issues



Hadronic events

Proton remnants

Secondary scattering

Event generators need to model
¢ Hard interactions,

o (inital or final state) radiation,
© multipe scatterings and beam remnants,
< hadronisation and hadron decays.
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Parton showers

Parton showers

< model the radiation cascade.

o facilitate a perturbative resummation of dominant logs.

o are interfaced to non(?)-perturbative generator components.
¢ need to “be okay” many different data sets.

Status: Formally only LL for inclusive observables.
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The end. .. thanks for your time.
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Parton showers

Parton showers

< model the radiation cascade.

o facilitate a perturbative resummation of dominant logs.

o are interfaced to non(?)-perturbative generator components.
¢ need to “be okay” many different data sets.

Status: Formally only LL for inclusive observables.

But parton showers contains many improvements that are
necessary to

(a) allow a matching to fixed-order
(b) help to describe data

In what way are parton showers better than LL?



Parton showers

How do we derive a parton shower?

(a) From collinear limit — DGLAP showers
(PYTHIAG6-Q?, Herwig+-+-©, KRKMC showers, WHIZARD showers)

(b) From soft limit — Dipole antenna showers
(ARIADNE, VINCIA, ANTS)

(c) From NLO calculations — Partitioned dipole showers
(SHERPA Cs shower, Herwig++ dipole shower, PYTHIAS)
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(b) From soft limit — Dipole antenna showers
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(c) From NLO calculations — Partitioned dipole showers
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Once we have a parton shower, we include improvements to match onto
fixed-order results:
© ME centric view: Add PS to ME, amend PS where necessary (e.g.
improved Sudakov for MC@NLO, truncated showers)

© PS centric view: Take PS, correct some configurations to ME (e.g.
ME corrections, PS reweighting)

...a better shower is always a better starting point.



ME-centric improvements

Use improved and “old” showers simultaneously, switch to “old” shower

when improved shower no longer needed.

One example: Truncated shower for METS merging.
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Use improved and “old” showers simultaneously, switch to “old” shower

when improved shower no longer needed.

One example: Truncated shower for METS merging.

(e)

Truncated shower
Standard shower

Vetoed shower




ME-centric improvements

Use improved and “old” showers simultaneously, switch to “old” shower
when improved shower no longer needed.

A more recent example of PS improvements for ME matching are
coloured showers for MCONLO. For this, remember:

Bn - Bn+vn+/n+/(DA_Ds)

~ A
gMCeNLO B {AA(Pme) + / DB,,AA(PJ_)] +/ [R — DA}
= For finite [ (D* — D®) without approximations, D* needs to have all
subleading divergences.
This also includes subleading colour terms!

Subleading colour treatment have been introduced in SHERPA and
HERWIG++/MATCHBOX.

6
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do/dlog(py/GeV) [pb]

PS / MC@NLO

Coloured MC@NLO dipole showers in SHERPA
Do 1/N. corrections make a difference?

Transverse momentum of top-quark pair

Transverse momentum dependent forward-backward asymmetry

T s = o3 ,
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e Effect of sub-leading color corrections typically O(10%)
e In most cases also well within parton shower uncertainty
e Can have larger impact on some observables, e.g. Arg(pT)

Slide (©Stefan Hoche, see also JHEP 1209 (2012) 049, Phys.Rev. D88 (2013) 014040



Coloured MC@NLO dipole showers in SHERPA
Do 1/N. corrections make a difference?

Transverse momentum of top-quark pair Transverse momentum dependent forward-backward asymmetry
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o Effect of sub-leading color corrections typically O(10%)
e In most cases also well within parton shower uncertainty
e Can have larger impact on some observables, e.g. Arg(pT)

Slide (©Stefan Hoche, see also JHEP 1209 (2012) 049, Phys.Rev. D88 (2013) 014040
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Colours in HERWIG-++/MATCHBOX Slide ©Simon Pidtzer
First steps towards higher orders in ..

Include virtual colour rearranging terms in shower evolution.

Studied for gaps between jets. [A. Schofield, M. Seymour — JHEP 1201 (2012) 078]

Correct single emission pattern by full colour correlations.
‘Colour matrix element corrections’ first studied for LEP.

[S. Platzer, M. Sjodahl — JHEP 1207 (2012) 042]
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Slide ©Simon Platzer

HERWIG++
Multiscale Showering.

Improve shower algorithm for soft gluons in multi-scale problems.
Particularly relevant in decays of heavy coloured particles (masses, widths, IR cutoff).

[P. Richardson, D.E. Winn — in preparation]
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Slide ©Simon Platzer

HERWIG++

Eigentunes.
[P. Richardson, D.E. Winn — Eur.Phys.J. C72 (2012) 2178]

Eigentunes for Herwig++ similar to PDF error sets.

Investigate impact on jet substructure analysis (including H — bb POWHEG).

Out-of-plane p in GeV w.r.t. thrust axes
S —=— DELPHI data 9 Herwig++ W — v NLO

Herwig++ Tune ‘
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0 0.5 1 1.5 2 25 3 3.5 Mass[GeV}
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Antenna showers

..or: why was ARIADNE looking so good?
e Antennae quite naturally include coherence effects.

e Fewer antennea compared to partitioned dipoles (— antenna
showers should be very efficient).

e Antennae lend themselves to ME corrections (less partial
fractioning of ME corrections is necessary, on-shell kinematics
as for all dipole showers, the qqg antenna is the Z— qqg ME).



Antenna showers: SHERPA



Antenna shower in SHERPA Slide ©Korinna Zapp

Motivation
» coherent radiation off colour dipole
> local recoil compensation

» relation to antenna subtraction

Status
» ANTenna Shower (ANTS) implemented (WK kernels)

Winter & Krauss, JHEP 0807 (2008) 040

» two kinematics mappings: WK & antenna mapping
Gehrmann-De Ridder, Gehrmann, Glover & Heinrich, JHEP 0711 (2007) 058
Daleo, Gehrmann & Maitre, JHEP 0704 (2007) 016

> needs validation & tuning

Future plans
» implement antenna kernels

» matching & merging 13/25



ANTS: preliminary results slide ©Korinna Zapp
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Antenna showers: VINCIA

Motivation:

o Coherence, PS is a very efficient phase space generator.

o PS-centric matching approach: Have PS that fills full phase space
...then correct with full matrix elements.



Slide ©Peter Skands

Smooth Ordering

Giele, Kosower, Skands, PRD 84 (2011) 054003
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Slide ©Peter Skands

New aspects of VINCIA

Larkoski, Lopez-Villarejo, Skands, PRD87(2013)054033

Helicity-dependence for relativistic partons

Can use a single helicity ME as radiation function

Dominant = MHV (easiest to evaluate) + NMHV + ...
Note: Helicity # Polarization (azimuthal corrs only via ME corrections)

0! «I Evolution in Ariadne pt |

Full 2"d order corrections ~
. — 2
One-loop Z—3 matrix element: S i
= singularities + logs + finite pieces &
Poles (A}(14,34,25)) = 2 (1,5;><;,s13> + T (e, s25) — 15*3(;,3123)) A9(1,3,2) 5
Finite (44.‘5(111-, 39:2)) = — (R(ylzs-,mzs) + glng s+ glng !/215) A§(1,3,2)
: : -4 0 1
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Note: any coherent LL shower should get the singularities right. as(Mz) = 0.12, Yr = prg |I’\(Y23)
The rest goes beyond LL Hartgring, Laenen, Skands, JHEP10(2013)137
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Slide ©Peter Skands

+ Uncertainties

1-Thrust (udsc)

Automated uncertaintieng

o]
© -
Evaluated on the fly e ! o
.. . . ~5-NLO pT ku=0.5
by explicit variations 1 - MOPT iz
NLO mD
branching by branching 107

— Vector of weights
Central weight is unity (unw)™
+ 11 alternative weights z

MR variations
Subleading antenna terms

pT vs mD evolution
Subleading colour

vine Data from Phys.Rept. 399 (2004) 71
incia 1.101 + MadGraph 4.4.26 + Pythia 8.179

RN

Theory/Data

1-T (udsc)

Disclaimer: formalism for pp still underway
see Ritzmann, Kosower, Skands, PLB718(2013) 1345




Analytic Parton Showers

> conventional parton showers:
> trial splittings
> if not allowed reject or manually altered
> probabilities incalculable
> analytic parton showers
> ensure that either

> only allowed branchings are generated
> or probability of rejection is calculable

> possible to reweight events after they are simulated

L
Sebastian Schmidt — DESY, Standort Hamburg — Hamburg, 11.06.2012 — Page 18 DESY
/‘h 25



Analytic Parton Showers

> conventional parton showers:
> trial splittings
> if not allowed reject or manually altered
> probabilities incalculable
> analytic parton showers
> ensure that either

> only allowed branchings are generated
> or probability of rejection is calculable

> possible to reweight events after they are simulated

WHIZARD approach: Remove veto of disallowed kinematics after
momentum reshuffling by performing 1 — 3 and 2 — 4 splittings.
= “PS cross section” is known. Reweighting possible.

L
Sebastian Schmidt — DESY, Standort Hamburg — Hamburg, 11.06.2012 — Page 18 DESY
/‘h 25



Results: Reweighting
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Results: Reweighting
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do/dEy (nb/GeV)
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Electroweak corrections to showers?

jet—production (In| < 2.5)
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Nucl.Phys.B759(2006)50

o Weak correction is ~ o, In*(5/M,,).
o Is W/Z-boson radiation a necessary ingredient for TeV-jets?
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Is W/Z-boson radiation a necessary ingredient for TeV-jets?

Idea: Implement W /Z-shower off QCD processes, and check!
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Slide (©Jesper Roy Christiansen
Electroweak showers in PYTHIA: Preliminary results

@ Effect of weak emissions in high p, -jets.

@ Possible to give a better description of the W/Z+jets production
than the normal PS?

@ Needed step to be able to recluster all PS histories
in the merging/matching approach.

(2 Niet), Z = i, po(jet) > 30 GeV, |yjer < 4.4

> o = L B L L B B L L !
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Slide (©Jesper Roy Christiansen
Electroweak showers in PYTHIA: Preliminary results

Uses s- or u + t-channel ME's as splitting probabilities. Multiple boson
emissions very rare.
@ Effect of weak emissions in high p, -jets.

@ Possible to give a better description of the W/Z+jets production
than the normal PS?

@ Needed step to be able to recluster all PS histories
in the merging/matching approach.

(2 Niet), Z = i, po(jet) > 30 GeV, |yjer < 4.4

> o = L B L L B B L L !
z & F e ATLAS data 3
g F s F Drell-Yan production |
S r Zi0t = " o
g SetE —— Radiation 3
10% TOE —— Combined 3
L s
07 T 3
E e No™ - =
10° £ ]
E _ 107 L=
L Bl b b b b e 04 d
105 1 T
E N L E 3

£ S12 | 3
gr2F i

0% o 31: = ' F:
£ So8 ’—,—oJ =
0 ‘ ‘ ‘—’—‘ ‘ L = I N B e e B R -

20 =21 22 23 z4 25 26 N 2 3 4 5 ° 7

Number of Z/W bosons Njet

23 /25



Open issues

There has been a lot of work on showers in the last few years - most of it
under the radar. Here some questions:

1. Is there / what is the connection to CSS resummation? How
accurate is the PS?
Problem: How to factor in recoil effects?
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Open issues

There has been a lot of work on showers in the last few years - most of it
under the radar. Here some questions:

1. Is there / what is the connection to CSS resummation? How
accurate is the PS?
Problem: How to factor in recoil effects?

2. What are the uncertainties?
Problem: Solve 1. to know how to vary scales; how large is the
cross-talk between perturbative uncertainties and tuning?

3. What about flavour thresholds and associated logs?
Problem: Do we have “the same soft gluons”!?

4. What about BFKL?
Problem: Where is BFKL?

5. Are there electro-weak Sudakovs?

...and many more non-perturbative (?) issues!
Is oo universal? What about “The ridge”? What's wrong with
identified flavours @ LHC? Strings vs. clusters?

1Question © Z. Nagy 2405
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