

CMS VBF Z+2 jet candidate

Tests of Vector Boson plus Jets Production at the LHC

CTEQ workshop November 14, 2013

Jeffrey Berryhill (Fermilab)
On behalf of the CMS and ATLAS
collaborations

production

Inclusive photon cross section

arxiv:1311.1440

80 GeV photon trigger, with 2 M photons in the 100-1000 GeV range for $|\eta|$ < 2.37, with 4.6/fb at 7 TeV

Tight shower shape selection plus isolation ET < 7 GeV in a 0.4 cone

Background isolation rejection estimated from non-tight photons (vs. ET)

>93% purity for ~80% efficiency

6-7% systematic
uncertainty is dominant for
total cross section estimate
> 100 GeV (~25% > 800
GeV)

Inclusive photon cross section

arxiv:1311.1440

Comparison with JETPHOX 1.3:

MC/Data ratio dominated by MC scale uncertainty, **12-20%** (except at highest ET where PDFs matter too)

Below 500 GeV data are 2X more precise than NLO theory

Shape described well, normalization agrees within scale uncertainty

Comparison with LO+PS:

Pythia and Herwig shapes agree well.

Herwig norm undershoots data by 10-20%

Photon + jet triple diff. cross section

CMS-PAS-QCD-11-005

Photons selected in the 40-300 GeV range for $|\eta|$ < 2.5, jet ET > 30 GeV with $|\eta|$ < 2.5, with 2.1/fb at 7 TeV

>20-70% purity for (not strictly isolated) photons at ~70-90% efficiency

~5-8% systematic uncertainty is dominant for cross section estimates near 100 GeV

Photon + jet triple diff. cross section

CMS-PAS-QCD-11-005

Comparison with JETPHOX 1.2.2:

Shape and norm within 10-20% scale uncertainty band

Data ~2x more precise than NLO MC

Comparison with SHERPA 1.3.1 (up to 3 jets):

Similar level of agreement to JETPHOX

Prediction defined w.r.t. 5 GeV hadronic isolation in a cone of 0.4

arxiv:1307.6795

Photon+jet dynamics

Cos θ , mass distributions are in good agreement

JETPHOX, HERWIG fail to describe shape of the $\Delta \phi$ < 2 region at the 20% level

PYTHIA, SHERPA succeed

Photon+jets: Mini-prospectus

7 TeV conclusions: LO+PS and NLO are doing mostly OK at the 20% scale uncertainty level compared to the 7 TeV photon data. There are some exceptional phase space regions.

7 TeV data are at <10% precision so 2X theory improvements can be readily confronted (NLO+PS, NNLO?)

With 8 TeV data: TeV scale cross sections will ~double in precision to the 10% level, and extend differentially beyond 1 TeV

At lower scales multiply differential distributions can be more completely explored.

Unexplored so far at LHC:

Photon + multijet production

Photon + heavy flavor

Diphoton or V+photon + multijet

VBF photon, diphoton, or V+photon + 2 jet

W, Z plus Jets production

JHEP07(2013)032

Z+jets diff. cross section

~500k Z candidates selected in 4.6/fb at 7 TeV with >=1 AK4 jet with PT>30 GeV, |y| < 4.4; up to 7 jets observed

tt background at 20% level for 6 jets (est. from emu)

JES systematic uncertainty dominates (8% for N>=1, 20% for N>=4)

Scale uncertainty dominates NLO error (4-13% for N=1-4)

Data error is 2X NLO theory

NLO and LO+PS describe data well where applicable (N=4 and 5, resp.)

Z+jets diff. cross section

JHEP07(2013)032

Leading Jet PT probed in bins out to 700 GeV

Data unc. < NLO MC unc. for PT>= 100 GeV

BlackHAT+Sherpa describe data well.

ALPGEN, SHERPA show 20% discrepancies

Insufficient generated partons leads to worse disagreement at higher PT (MC@NLO Z+1jet)

NLO EWK is also a factor at highest PT

Z+jets diff. cross section JHEP07(2013)032

BlackHat+Sherpa fails to describe HT shape.

LO+PS does a somewhat better job.

Which of the following would improve the prediction the most?:

More partons NLO+PS NLO EWK NNLO QCD

JHEP07(2013)032

Z+jets diff. cross section

Jet properties explored with Two leading jets in a "VBF" configuration:

Mjj > 350 GeV $|\Delta yjj| > 3$

This is still predominantly QCD Z+2 jets, so a background study for future VBF Higgs and VBS analysis

NLO and LO+PS describe data well in this regime, at the 25-50% level.

Z+jets diff. cross section

Efficiency of 3rd central jet veto as a function of 3rd jet PT threshold for VBF Z+>=2 jet

20 (7)% inefficiency observed at 30 (50) GeV central jet threshold

Agrees with LO+PS at <5% level

PLB 722(2013)238

Z+jets event shape

With 5/fb at 7 TeV, azimuthal Z-jet and jet-jet angular shapes and transverse thrust explored, inclusively and for Z PT > 150 GeV

Madgraph, Sherpa describe data well at low and high ZPT for Njet >= 1-3

POWHEG, PYTHIA have too few partons and so have limited applicability

Z+jets event shape

PLB 722(2013)238

Madgraph describes log transverse thrust well, Sherpa shows 10-20% discrepancies

 $\Delta\Phi$ ~ π , In τ T ~- ∞

 $\Delta\Phi$ << π , ln τ T ~-1

Z+=1 jet rapidity shape

arxiv:1310.3082

yZ and yjet well described by LO+PS

BUT |yZ+yjet|/2 and |yZyjet|/2 exhibit large discrepancies at large values

SHERPA and Madgraph diverge from data in different directions.
Attributed to parton-shower matching differences.

MCFM somewhat better in yDIF but still with poor Sherpa-like ySUM

PRD85(2012)092002

W+jets diff. cross section

W+light jets only examined in 2010 data thus far.

Similar level of agreement to Z+jets

Larger (tt) backgrounds at high Njet

Larger comparable reach in leading jet PT and HT

Towards VBF/VBS: VBF Z production

Comprehensive study of Z+forward dijet production at 7 and 8 TeV.

VBF Z one of the interfering amplitudes

Z+2jet events selected with "VBF topology": large dijet mass, large dijet Δy

Small S/B enhanced with BDT selection exploiting all Z+2jet kinematics

5 sigma signal for electroweak Z+jet production observed, fully consistent with SM

TGC potential under study

Towards VBF/VBS: VBF Z production

Multijet properties explored in EWK-enriched subsample (Mjj > 1250 GeV)

Madgraph w/K factor describes central jet multiplicity well

Third jet PT also well described.

CMS-PAS-FSQ-12-035 JHEP10(2013)101

W,Z+jets: Mini-prospectus

7 TeV conclusions: LO+PS and NLO are doing mostly OK at the 10-20% scale uncertainty level compared to the 7 TeV data. There are some exceptional phase space regions, especially in angular patterns of radiation and high HT. Data precision leads theory precision at highest PT.

VBF-like V+2 jet production is now a detailed topic of study in its own right

With 8 TeV data: Close to probing TeV PT scale and very large jet multiplicities (8 or more)

At lower scales multiply differential distributions can be more completely explored.

NLO+PS and NLO EWK effects can be tested.

W+jets has been neglected but has stronger sensitivity to high PT/VBF phenomena.

W, Z plus
Heavy
Flavor
production

Z+b, bb production

12k Z+1 b-tag and 500 Z+2 b-tag events expected in 5/fb at 7 TeV.

tt suppressed by Z mass and MET significance cut, Z+light/charm jets rejected by large secondary vertex mass (MSV).

Z+b (bb) extracted from 1D (2D) template fit to MSV (MSV1, MSV2)

Exclusive 1,2-tag cross section estimated after N-tag-wise unfolding of MET, lepton, JES, and b-tag response

$$\frac{\sigma(Z+1b)}{\sigma(Z+2b)} = \frac{1}{\mathcal{L}} \times \mathbf{E}_{r}^{-1} \times \mathbf{E}_{b}^{-1} \times \mathbf{E}_{b}^{-1} \times \mathbf{E}_{m}^{-1} \times \begin{pmatrix} N_{sig}^{Z+1b} \\ N_{sig}^{Z+2b} \end{pmatrix}$$

$$\frac{\sigma(Z+1b)}{\sigma(Z+2b)} = \frac{1}{\mathcal{L}} \times \mathbf{E}_{r}^{-1} \times \mathbf{E}_{b}^{-1} \times \mathbf{E}_{m}^{-1} \times \begin{pmatrix} N_{sig}^{Z+1b} \\ N_{sig}^{Z+2b} \end{pmatrix}$$

$$\frac{1}{\sigma(Z+2b)} = \frac{1}{\mathcal{L}} \times \mathbf{E}_{r}^{-1} \times \mathbf{E}_{b}^{-1} \times \mathbf{E}_{m}^{-1} \times \begin{pmatrix} N_{sig}^{Z+1b} \\ N_{sig}^{Z+2b} \end{pmatrix}$$

$$\frac{1}{\sigma(Z+2b)} = \frac{1}{\sigma(Z+2b)} \times \mathbf{E}_{m}^{-1} \times$$

Z+b, bb production

Exclusive cross sections agree with MadGraph 4F and 5F predictions.

B-tag efficiency and mistag uncertainty dominate total cross sections

Z PT in 2b case is somewhat harder than MadGraph.

Mbb and other variables in good agreement

Multiplicity bin	Measured	MadGraph 5F	MadGraph 4F
$\sigma(Z(\ell\ell)+1b)$ (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.02	3.11±0.03
$\sigma(Z(\ell\ell)+2b)$ (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.01	0.38 ± 0.01
$\sigma(Z(\ell\ell)+b)$ (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.02	3.49 ± 0.03
$\sigma(Z(\ell\ell)+b)/\sigma(Z(\ell\ell)+j)$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.02	4.60 ± 0.03

Z+BB hadrons cross section

arxiv:1310.1349

Using a tracker-driven inclusive vertex reconstruction technique, B-hadron pairs can be identified with excellent angular resolution→can explore very collinear production from e.g. gluon splitting.

Total cross sections predicted by MadGraph 4F/5F, ALPGEN, aMC@NLO about 15% low, worse at high ZPT.

Madgraph, aMC@NLO underpredicting lowest ∆R

W+b cross section

JHEP06(2013)084

W candidates with =1 or 2 jets and = 1 b-tag selected from 4.6/fb at 7 TeV

Two different taggers with complementary info combined into an ANN discriminant against light/charm jets. 40-60% of tags retained for signal extraction via MLH template fit of ANN.

tt contribution constrained by 4-jet 1-tag sample; single top constrained by m(Wb) distribution

JHEP06(2013)084

W+b cross section

Exclusive cross sections measured to 20% precision (dominated by JES syst.)

W+b + single top results also presented

MCFM NLO and LO+PS predictions consistent with data at 1.5σ

Data and MC precision comparable

Diff. b PT cross sections a bit harder than MCFM/ALPGEN

CMS-PAS-SMP-12-026

W+bb cross section

W candidates with =2 jets and =2 btags selected from 5/fb at 7 TeV

W+c,cc reduced by combined cut on the MSV of the two b-tags

tt normalized by =4jet,2-tag sample

Remaining top discrimination from leading jet PT templates.

MCFM in good agreement with measured cross section.

MadGraph agrees with Mbb distribution

W+charm cross section

arXiv:1310.1138

Leading order W+c directly probes **strange quark PDF**

Strange and anti-strange probed independently by W+, W-

W and c are opposite sign

Higher-order W+cc, W+bb, top are same-sign/opposite-sign symmetric→subtract with same-sign data

(semi-)exclusive charm hadron reconstruction gives high-purity, self-charge-tagged W+c samples

W+charm cross section

arXiv:1310.1138

- Measure cross section and charged ratio vs lepton $|\eta|$
- Consistent across three different hadron reco methods
- Leading syst. are JES, charm branching fractions
- Consistent with NLO MCFM predictions

W+charm cross section

arXiv:1310.1138

- Data consistent with strange content of pre-LHC PDFs (neutrino fixed-target), approaching good precision
- Data consistent with charge symmetric strange PDF

W+charm hadron cross section

ATLAS has a very similar analysis with somewhat different selected phase space and cross section definitions.

Cross sections measured for charm hadrons, not partons

Compared with aMC@NLO: Minimum PT(D) > 8 GeV, $|\eta D|$ < 2.2 PTI > 25 GeV, MET>25 GeV, MT> 40 GeV

Favors somewhat higher ssea

Measures also PTD diff. cross section as well as η(lepton)

W+charm hadron cross section

CMS-ATLAS difference is between 1-2 sigma, roughly, since CMS ~ CT10 with similar error.

W,Z+heavy flavor: Mini-prospectus

7 TeV conclusions: LO+PS and NLO are doing mostly OK at the 20% scale uncertainty level compared to the 7 TeV data. There are some exceptional phase space regions. Interesting sensitivity to sea quark PDFs.

With 8 TeV data: differential cross sections to be explored in more detail and in regions more relevant for Higgs/searches

Unexplored so far at LHC:

Z+c(cc)

W+cc

Z+b angular distributions

Comprehensive W+Njet+Mtags

Summary

- V+jets production measurement has been explored in most all relevant areas with the 7 TeV data. But almost no 8 TeV results available yet!
- NLO and LO+PS are successfully describing the data at the advertised level of accuracy in a wide variety of situations.
 But there are exceptional distributions everywhere. Can the next generation of predictions resolve those exceptions?
- V+jets is not the only precision laboratory for multijet QCD going forward. Also look at jet dynamics:
 - In VV and VBF, relevant for precision Higgs physics
 - In phase space relevant for high PT searches