Cluster-transfer reactions with radioactive ⁹⁸Rb and ⁹⁸Sr beams on a ⁷Li target

Simone Bottoni Università degli Studi di Milano & KU Leuven

ISOLDE Workshop - November 2013 - CERN

Outline

\circ Introduction:

- Why cluster transfer reactions with RIBs?
- The experiment at REX-ISOLDE

 $\circ \gamma$ spectroscopy

• Reaction mechanism:

- Experimental observables
- Theoretical interpretation
- Conclusions and future perspectives

• Cluster-transfer reactions:

• Possible advantages:

- Study of new mass regions
- Probe of different nuclear structures
- Population of Yrast and off-Yrast states
- Medium high spin-energy states
- Particularly suitable to study n-rich nuclei
- Never tested so far with RIBs

• Cluster-transfer reactions:

Elastic break-up Cluster transfer

• Possible advantages:

- Study of new mass regions
- Probe of different nuclear structures
- Population of Yrast and off-Yrast states
- Medium high spin-energy states
- Particularly suitable to study n-rich nuclei
- Never tested so far with RIBs

• Near magic nuclei ²⁰⁸Pb and ¹³²Sn:

Why cluster-transfer reactions with RIBs?

• Cluster-transfer reactions:

• Possible advantages:

- Study of new mass regions
- Probe of different nuclear structures
- Population of Yrast and off-Yrast states
- Medium high spin-energy states
- Particularly suitable to study n-rich nuclei
- Never tested so far with RIBs

TEST CASE: 98Rb+7Li @ 2.85 MeV/A

\circ The reaction

⁹⁸Rb/⁹⁸Sr + ⁷Li @ 2.85 MeV/A

o Details of the experiment

- Beam composition: $\approx 60 \%^{98}$ Rb & 40 \%^{98}Sr
- Beam intensity: 2.4-10⁴ pps
- Target: 1.5 mg/cm² LiF

$\circ\,$ The experimental setup

• The reaction

⁹⁸Rb/⁹⁸Sr + ⁷Li @ 2.85 MeV/A

\circ Details of the experiment

- Beam composition: $\approx 60 \%^{98}$ Rb & 40 $\%^{98}$ Sr
- Beam intensity: 2.4-10⁴ pps
- Target: 1.5 mg/cm² LiF

$\circ\,$ The experimental setup

\circ Aim of the experiment:

- Cluster-transfer mechanism
- Population of A =100 region by transfer

• Technique:

- Cluster (α or t) transfer in 98 Rb/ 98 Sr
- Detection of emitted particle (t or α)
- Neutron evaporation
- Detection of γ-rays in coincidence

REACTIONS TOOK PLACE BOTH ON ⁹⁸Rb AND ⁹⁸Sr

Particle detection

Simone Bottoni - UNIMI & KU Leuven

Simone Bottoni – UNIMI & KU Leuven

Simone Bottoni – UNIMI & KU Leuven

Cross Section

• Transfer reaction: $(a+x)+b \rightarrow a+(b+x)$

 \circ Total wave function:

 $\psi_{tot} = \varphi_A(r) \chi_{\alpha}(R_{\alpha}) + \varphi_B(r') \chi_{\beta}(R_{\beta})$

• Cross section:

 $\sigma \sim \langle \varphi_{B} \chi_{\beta} | V_{int} | \varphi_{A} \chi_{\alpha} \rangle$

Cross Section

• Transfer reaction: $(a+x)+b \rightarrow a+(b+x)$

• Total wave function:

 $\psi_{tot} = \varphi_A(r) \chi_{\alpha}(R_{\alpha}) + \varphi_B(r') \chi_{\beta}(R_{\beta})$

• Cross section: $\sigma \sim \langle \varphi_B \chi_\beta | V_{int} | \varphi_A \chi_\alpha \rangle$

• Internal states:

Simone Bottoni – UNIMI & KU Leuven

Cross Section

Elastic

Transfer

Excitation energy distributions and angular distributions

are qualitatively reproduced by the model

Simone Bottoni - UNIMI & KU Leuven

Conclusions

- ⁹⁸Rb/⁹⁸Sr + ⁷Li @ 2.85 MeV/A at REX ISOLDE using the MINIBALL T-REX setup
- \circ Analysis of particle γ coincidence for cluster-transfer channels
- **o** Difference in neutron evaporation due to different structure
- Spin un to 6 ħ observed.
- Comparison of cross sections with DWBA cluster transfer to continuum
- Qualitative agreement with theory

• Use of the same mechanism in future experiments to populate neutron-rich nuclei at mediumhigh spin with a new generation of radioactive beams (HIE-ISOLDE, SPIRLAL2, SPES etc.)

- S. Leoni et. al, "Interplay of single-particle and collective structures in ${}^{46}Ca$ " ${}^{45}K + {}^{7}Li LoI AGATA@GANIL$
- R. Orlandi, F. Flavigny et. al, "Study of 0⁺ states and deformed structures in ⁴⁸Ca" ⁴⁴Ar + ⁶Li LoI AGATA@GANIL
- ...

Collaboration

S. Bottoni^{1,2,4}, S. Leoni^{1,2}, B. Fornal³, R. Raabe⁴, G. Benzoni², A. Bracco^{1,2}, F.C.L. Crespi^{1,2}, A. Morales², B. Bednarczyk³, N. Cieplika³, W. Królas³, A. Maj³, B. Szpak³, M. Callens⁴, J. Bouma⁴, J. Elseviers⁴, F. Falvigny⁴, R. Orlandi⁴, K. Rusek⁵, P. Reiter⁶, M. Seidlitz⁶, S. Klupp⁷, D. Mücher⁷, G. Georgiev⁸, D. Balabanski⁹, M. Sferrazza¹⁰, M. Kowalska¹¹, E. Rapisarda¹¹, and the MINIBALL-T-REX collaboration. ¹Università degli Studi di Milano, Milano, Italy ²INFN sezione di Milano, Milano, Italy ³ The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland ⁴Instituut voor Kern- en Stralingsfysisca, KU Leuven, Leuven, Belgium ⁵Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland ⁶Institut für Kernphysik der Universität zu Köln, Köln, Germany ⁷Physik Department, Technische Universität München, München, Germany ⁸CSNSM, Orsay, France ⁹IRNE-BAS, Sofia, Bulgaria ¹⁰ Université libre de Bruxelles, Bruxelles, Belgium and ¹¹ISOLDE, CERN, Geneve, Switzerland

Cluster-transfer reactions with radioactive ⁹⁸Rb and ⁹⁸Sr beams on a ⁷Li target

Simone Bottoni Università degli Studi di Milano & KU Leuven

ISOLDE Workshop - November 2013 - CERN

Thank you!

