

100192

WITCH, a Penning Trap for Weak Interaction Studies

T. Porobić²,

G. Ban¹, M. Breitenfeldt², P. Finlay², X. Fabian¹ X. Fléchard¹, P. Friedag³, F. Glück⁵, A Knecht⁶, V. Kozlov⁵, E. Liénard¹, G. Soti², M. Tandecki², S. Van Gorp², Ch. Weinheimer³, D. Zákoucký⁴, N. Severijns²

¹LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France ²Instituut voor Kern- en Stralingsfysica, KUL, Leuven, Belgium ³Universität Münster, Institut für Kernphysik, Münster, Germany ⁴NPI Rež, Czech Republic

⁵Karlsruhe Institute of Technology, Institut fur Kernphysik, Germany ⁶CERN, Geneva, Switzerland

Outline

- Introduction & motivation
- Overview of the WITCH experiment
- Recent results & analysis
- Investigation of the systematic effects
 - SimWITCH3D
 - Space-charge effects
 - Detector efficiency
- Outlook

Motivation: New Physics

Search for physics beyond the standard model

High energy
Direct production - LHC

High precision
Low energy – β-decay

Beta decay:

Our focus: beta-decay of ³⁵Ar

Motivation

Why measure the recoil spectra of ³⁵Ar?

Standard Model: Vector, Axial-Vector Non-SM: Scalar, Tensor

$$W(E,\theta) = W(E) \left[1 + a \frac{v_e}{c} \cos(\theta) + b \frac{m}{E} \right]$$

Current experimental limits: (from nuclear & neutron β decay) $\frac{C_S}{C_V} < 7\%$, $\frac{C_T}{C_A} < 9\%$

Fermi transition

KU LEUVEN

The WITCH experiment

Pulsed drift tube for deceleration

▲ MCP

Penning traps at WITCH

- Scattering-free source
- He buffer gas in the cooler trap
- Dipole excitation at magnetron ω₋ frequency – mass independent removal from trap center
- Quadrupole excitation at cyclotron frequency ω_c mass selective centering & buffer gas --> cooling of the ion

Quadrupole Excitation + buffer gas

Dipole Excitation

WITCH: Spectrometer

- High field (9 T) at the traps, low (0.1 T) in the analyzing plane
- Adiabatic approximation: field gradient in a single cyclotron gyration radius is small
- E_{cycl} /B is an adiabatic invariant -> if B_{source} >> B_{plane} , then $E_{cycl,plane}$ << $E_{cycl,source}$
- Combination of electrostatic filter and inhomogenous mag. field => high energy resolution + high statistics

November 2012 online experiment

- Further improvements of the diagnostics, measurement systems and transmission
- New data acquisition system from LPC Caen
- More information in the datastream
- High background level

- Retardation spectrum extracted
- Systematic effects still not fully accounted for
- Studies of main MCP energydependent efficiency ongoing

Experimental cycle

Retardation spectrum

Systematic effects investigation

1. Spectrometer effects

- 2D symmetry breaking structures found, upgrading tracking simulation software to 3D was needed

2. Penning trap effects

- investigation of space-charge effects with offline ions and simulations

3. Main MCP energy dependent efficiency

- 1+, 2+, 3+ charge states of decay products
- reacceleration in front of the main MCP results in different energies for charge states

1. SimWITCH: Ion tracking simulation in the spectrometer

- Originally 2D, recently upgraded to 3D
- Tracks the recoil ions from the trap to the Main MCP
- Ion transport simulated for various retardation voltages (0 V 450 V)
- Also for all ³⁵Ar charge states (1+, 2+, 3+, 4+, 5+) (charge state measurement by LPC trap @GANIL [1])
- Axial symmetry broken by a diagnostic MCP and
 anti-ionization wire

SimWITCH-3D: influence of the wire on the potential in the spectrometer

Upgraded SimWITCH to include 2D symmetry breaking elements

The potential in the center is higher by \sim 1.1 V (0.5%)

Wire influence on the potential X-Y plane

Implemented by Paveł Bączyk, ISOLDE summer student

SimWITCH-3D: diagnostic MCP influence on the potential in the spectrometer

MCP influence on the potential X-Z plane

The potential in the center is higher by ~38 V (1.3%)

MCP influence on the potential X-Y plane

Influence on the ions – preliminary simulation results

Without the MCP

Position distribution of detected ions - 2D calculations 0.03 0.02 100 0.01 80 y [m] 0 60 -0.01 40 -0.02 20 -0.03 -0.03 -0.02 -0.01 0.01 0.02 0.03 x [m]

With the MCP

2. Simbuca: ion cloud dynamics and space-charge

lon cloud in the traps simulations: Simbuca¹ Simbuca: calculates ion cloud evolution in ion traps for large numbers of ions using GPU parallelization

- Simulated many-ion space-charge effects: cyclotron & magnetron resonant frequency shift, energy and other systematic effects
- Of interest to wider ion trapping community
- To be published

Simbuca: Transfer between traps

Coller trap – decay trap transfer scan

Decay trap energy scan

Transfer time - very sensitive to electric field imperfections, provides information on trap systematics

Simbuca: Transfer between traps

Simulation agrees well with experiment Minor differences caused by transient states of the power supply

[2] E. Wursten, Master Thesis

3. Main MCP detector

- 8 cm diameter
- delay lines, position resolution
 0.2 mm
- Total efficiency is 40(11)%
- Found energy dependent efficiency for 0 6 keV ions major systematic effect
- Caused by wear of the plates

MCP test bench at LPC-Caen

Mesh connected to an electrometer

Na+ ion gun (1-2 keV)

- Study of MCP energy effiency with a Na⁺ ion source
- Energy of can be varied 0 -6.5 keV
- Absolute efficiency measured

MCP energy dependent efficiency

- Our MCP efficiency increases with ion energy
- More data needed (with ³⁹K+ ions, improved improved normalization) for a precision correction of online data

Summary & outlook

- Retardation spectrum extracted
- SimWITCH-3D code successfully models systematics of the ion tracking, including axial symmetry breaking
- Simbuca code successfully simulates ion cloud evolution in the traps and transfer between traps, including spacecharge effects
- MCP efficiency crucial for extracting the β-v correlation coefficient, further study needed

