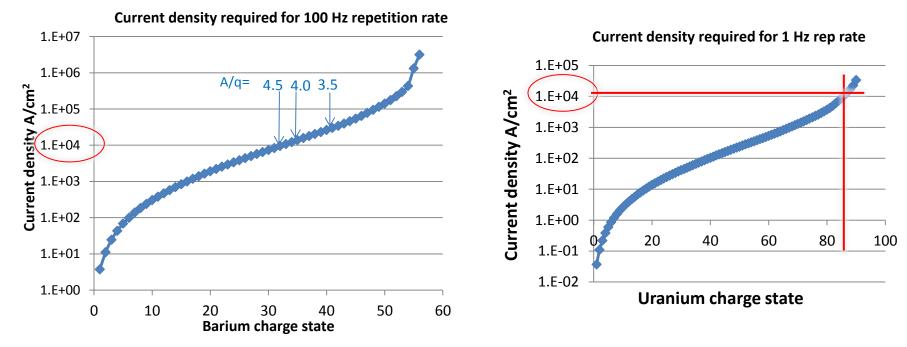
Charge breeder for HIE-ISOLDE and TSR@ISOLDE

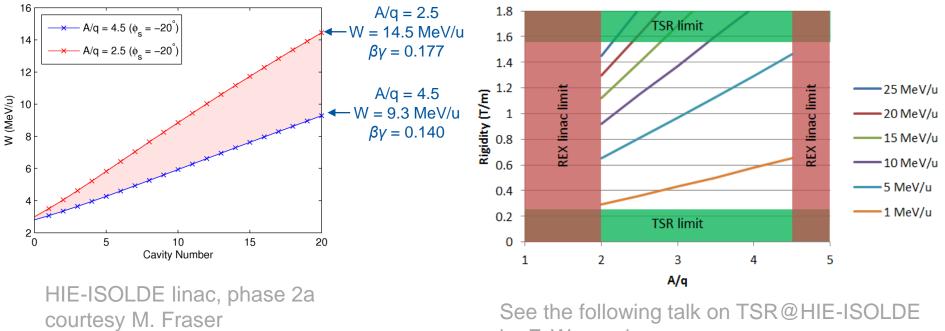
Charge breeder – the gear box of ISOLDE

Andrey Shornikov


You should care if...

your experiment is down the linac and:

- □ it will benefit from increased repetition rate
- □ it will benefit from energy increase from 9.3 to14.5 MeV/u
- □ it has something to do with TSR@ISOLDE
- □ it requests Very Highly Charged Ions (VHCI)


Breeding of VHCI and faster breeding

Breeding time (i.e. repetition rate) is defined by J_e (electron current density) $J_e \sim 10\ 000\ \text{A/cm}^2$ allows to reach max rep rate of linac for HIE-ISOLDE $J_e \sim 10\ 000\ \text{A/cm}^2$ allows to match the pace of injection+cooling cycle at TSR for HCI and VHCI

Increased energy from linac and injection to TSR - lower A/q

by F. Wenander

Lower A/q needs higher electron beam energy Lower A/q at the same or higher rep rate needs higher electron beam J_e VHCI, bare medium-Z and few-electron high-Z need extreme electron energy > 100 keV

Acceptance and capacity

Electron current, A

With $J_{\rm e}\,$ and $E_{\rm e}\uparrow$ acceptance \downarrow if $I_{\rm e}\text{=}\text{const}$

With $\mathsf{E}_{\mathrm{e}}\uparrow\mathsf{capacity}\downarrow\mathsf{if}\:\mathsf{I}_{\mathrm{e}}\mathsf{=}\mathsf{const}$

	electron energy keV					
	20	40	60	80	100	
1.5	20.7	17.4	15.8	14.7	13.9	
2.0	23.9	20.1	18.2	16.9	16.0	
2.5	26.7	22.4	20.3	18.9	17.9	
3.0	29.4	24.6	22.2	20.7	19.5	
3.5	31.9	26.6	24.0	22.3	21.1	
4.0	34.2	28.5	25.7	23.9	22.6	
4.5	36.5	30.3	27.3	25.3	23.9	
5.0	38.8	32.0	28.8	26.7	25.3	
EBIS accontance microns						

EBIS acceptance, microns

REXEBIS acceptance=34 microns

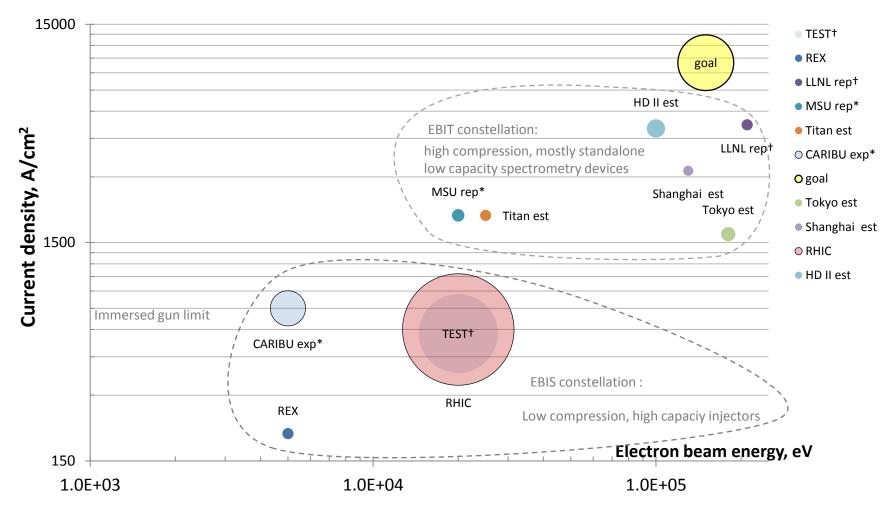
To have acceptance equal to REXEBIS 4-5 A is required together with E_e ramping down at injection

	electron energy keV					
	20	40	60	80	100	
1.5	1.6	1.1	0.9	0.8	0.7	
2.0	2.1	1.5	1.2	1.0	0.9	
2.5	2.6	1.8	1.5	1.3	1.2	
3.0	3.1	2.2	1.8	1.6	1.4	
3.5	3.7	2.6	2.1	1.8	1.6	
4.0	4.2	3.0	2.4	2.1	1.9	
4.5	4.7	3.3	2.7	2.3	2.1	
5.0	5.2	3.7	3.0	2.6	2.3	

Capacity of 50+ ions in 0.7 m trap at 0.1 neutralisation, 1E+8

REXTRAP capacity = 1E+8 ions/bunch

To have >1E+8 50⁺ ions capacity in the EBIS at 10% neutralization for any E_e one needs ~ 3 A



Figures of merit for a new breeder in a nutshell

Design values for HEC ² EBIS TSR@ISOLDE HIE-ISOLDE	
Electron energy [kV] (REXEBIS value)	150 (5)
Electron current [A] (REXEBIS value)	2-5 (0.2)
Electron current density [A/cm ²] (REXEBIS value)	1-2x10 ⁴ (100)

What is out there?

Bubble size represents electron current

rep - reported, est - estimated, * - in commissioning phase + - discontinued

If EBIT people tell you it's not a big deal...

Livermore Super EBIT - the best EBIT ever built

Production of U⁹²⁺ with an electron beam ion trap (invited)

R. E. Marrs

Lawrence Livermore National Laboratory, Livermore, California 94550

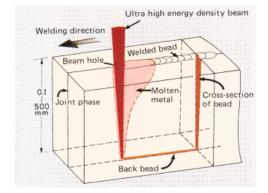
(Presented on 12 September 1995)

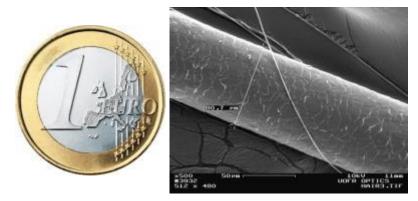
ization and recombination.) The most abundant charge states $(U^{88+} \text{ and } U^{89+})$ are produced even more quickly, so a yield of roughly 2×10^4 extracted ions per second can be expected for these charge states from the present LLNL Super EBIT.

TABLE II. The observed equilibrium ionization balance in the LLNL Super EBIT for uranium at 198-keV electron beam energy.

(Ionization) (stage)	Charge	Abundance (%)	Number of ions
Bare	92	0.02	10
H-like	91	1.0	<mark>500</mark>
He-like	90	17	<mark>8500</mark>
Li-like	89	34	17 000
Be-like	88	31	<mark>15 500</mark>
B-like	87	15	7500
C-like	86	3	1500
Total		100	5×10 ⁴

Rev. Sci. Instrum. 67 (3), March 1996


EBIT is not an ion source, it's a dedicated spectroscopic device


Let's get a feeling of what it is

150 kV, 2-5 A, 10⁴ A/cm²

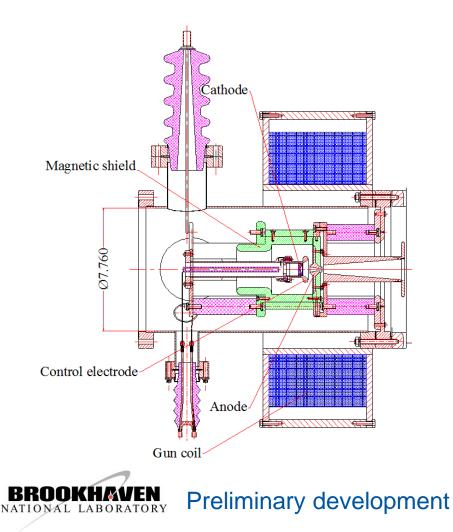
60 kV, 25 kW - an industrial electron beam welder

e⁻ beam heating enough to ignite D-T fusion 10⁴ A/cm² - beam compression from cathode (1€ size) to trapping region (human hair size)

e⁻ beam potential enough to confine fusion plasma

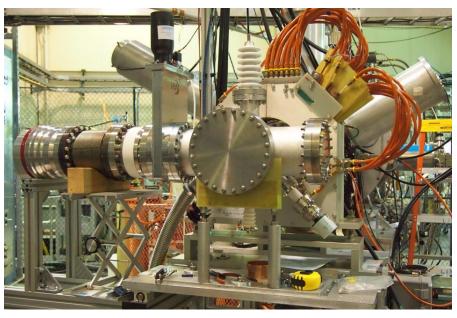
Electron Beam Ion Trap For Study Of Fusion Reactions In Nuclear Astrophysics

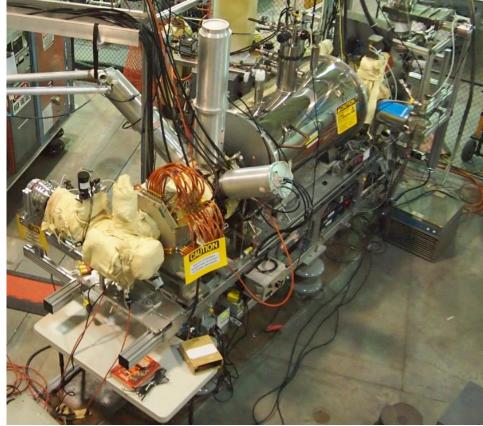
T. Itahashi*, N. Kudomi, Y. Sakemi, T. Shima, S. Yoshida, and T. Sakamoto * and E.D.Donets and E.E.Donets^{\dagger}


*Research Center for Nuclear Physics, Osaka Univ. Ibaraki, Osaka, Japan †Joint Institute for Nuclear Research, Dubna, Russia

Challenge accepted – HEC² joint project by CERN and BNL

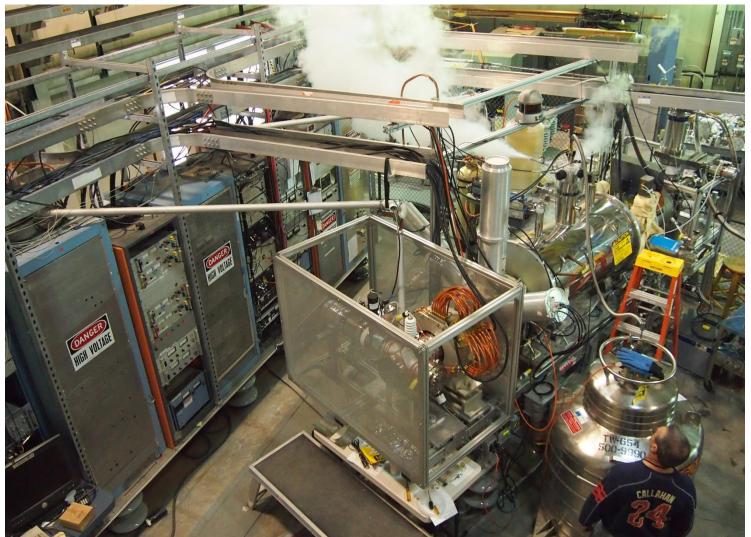
High Energy Current and Compression (HEC²) electron beam for charge breeding



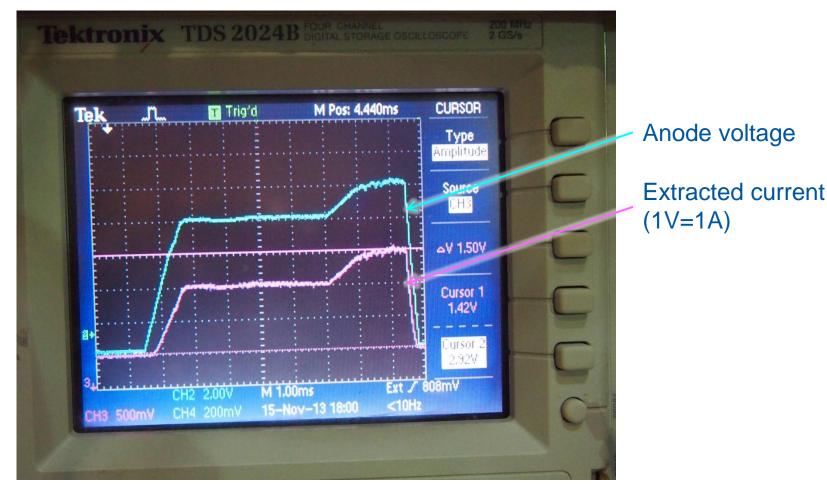

01-06.2013 manufacturing phase

Challenge accepted – using TestEBIS at BNL

TestEBIS – the cradle of all 4 highest current EBISes ever built

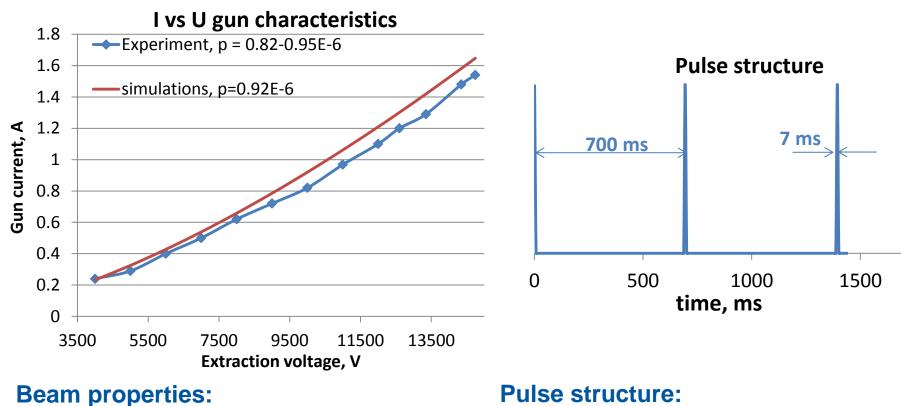


07-08.2013 HEC² moved to BNL, assembled, preparations of the Test EBIS started


Challenge accepted – using existing TestEBIS at BNL

10.2013 HV safety, cryogenics, interlocks, etc

First e⁻ beam – 08.11.2013

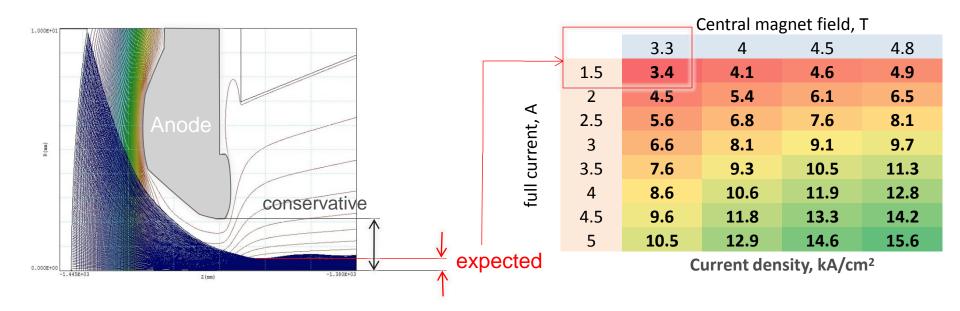


After 6 days of HV training and tuning - the current ramped to 1.5 A

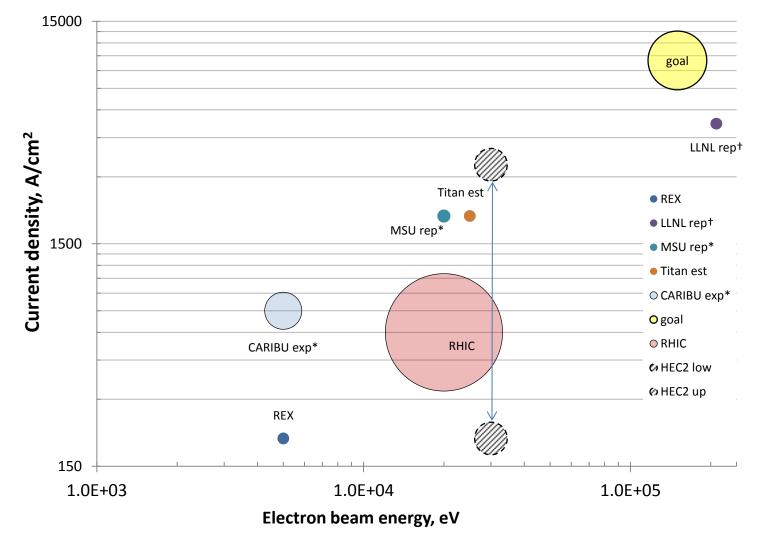
Training is essential due to numerous regions with ExB prone to magnetron discharge

First run summary

Main magnet field – 3.3 T (out of 4.8) Current – up to 1.54 A Electron energy 25-30 keV (max 40 keV)


Operation – pulsed (PS+collector limited) Pulse length – 3-7 ms (PS limited) Duty cycle - 0.5-3 % (collector limited)

First run summary


Current density?

Conservative – it passes through the anode opening x magnetic compression by the actual field of $3.3 \text{ T} \sim 170 \text{ A/cm}^2$ **Potential** (to be verified) ~ Herrmann radius of the beam at given I_e , B, E_e , B_c , T_c

Where we are on the map

Bubble size represents electron current

rep - reported, est - estimated, * - in commissioning phase + - discontinued

千里之行, 始于足下

What is our plan for

Short term (till summer 2014, within CATHI framework, material budget – HIE-ISOLDE)

 $\hfill\square$ Extract ionized residual gas to estimate the J_e by the CSD measured with ToF MS

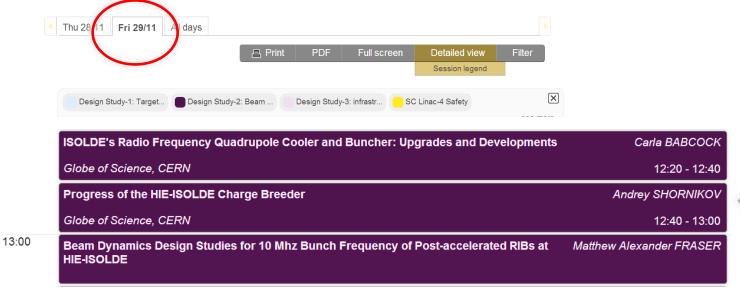
Install second anode PS and ramp the current to the limit

Mid term (in 2014, relies on HIE-ISOLDE design study budget and BNL cooperation)

□ Replace collector electrodes to a design suitable for HEC²

- □ Install primary ion injection line and test charge breeding
- □ Improve magnetic optics in the transition region

Long term (2015-16, relies on not yet granted support by ENSAR-2, otherwise canceled*)


- □ Upgrade PS and HV isolation to enable high energy DC operation
- □ Improve discharge stability of the gun for DC operation
- $\hfill\square$ Adjust the gun design to boost $J_{\rm e}$

* These goals are out of scope for BNL and will not be supported by DoE

Find out more on the HEC² project

HIE-ISOLDE Workshop: The Technical Aspects

Further materials:

Charge breeder for HIE-ISOLDE – Shornikov et al DOI:<u>10.1016/j.nimb.2013.06.030</u>
High compression gun – Pikin et al DOI: <u>10.1063/1.4793773</u>
Next expected update – IPAC 2014

The transatlantic HEC² team

- A. Shornikov (coordination, QA, on-site commissioning)
- R. Mertzig (simulations, on-site commissioning)
- F. Wenander (supervision at CERN)
- E. Barbero (manufacturing, post-production)

- A. Pikin (chief designer, BNL supervision, EBIS)
- E. Beebe (operation of EBIS)
- R. Schoepfer (operation/commissioning support)
- D. McCafferty (operation/commissioning support)

our supporters

R. Catherall, Y. Kadi, R. Scrivens, J. Alessi,

funding bodies

and many others...

