Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Javier Menéndez

Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI)

ISOLDE Workshop and Users Meeting 2013, Genève, 25 November 2013

Nuclear Landscape

Big variety of nuclei in the nuclear chart, $A \sim 2 \ldots 300$

Systematic ab initio calculations only possible in the lightest nuclei

Hard many-body problem: approximate methods suited for different regions

Interacting Shell Model:
Solve the problem choosing the (more) relevant degrees of freedom Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions

Nuclear Landscape

Big variety of nuclei in the nuclear chart, $A \sim 2 \ldots 300$

Systematic ab initio calculations only possible in the lightest nuclei

Hard many-body problem: approximate methods suited for different regions

Interacting Shell Model:
Solve the problem choosing the (more) relevant degrees of freedom Use realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions

The Interacting Shell Model

Basis states 3D Harmonic Oscillator

Configuration space is separated into

- Outer orbits: orbits that are always empty
- Valence space: the space in which we explicitly solve the problem
- Inner core:
orbits that are always filled

$$
H|\Psi\rangle=E|\Psi\rangle \rightarrow H_{e f f}|\Psi\rangle_{e f f}=E|\Psi\rangle_{e f f}
$$

Full diagonalization code ANTOINE Caurier et al. RMP77 427(2005)

Forces and Currents in Chiral EFT

Chiral EFT: low energy approach to QCD for nuclear structure energies Approximate chiral symmetry of QCD: pions pseudo-Goldstone bosons

Short-range couplings are fitted to experiment once
Systematic expansion of nuclear forces

	${ }^{2 x}$	Name	****
-0	XH	-	-
no	Xtaldat	-	-
Nio	H18	HH1X X	-
wio	$x \in \operatorname{lol} \mid$ 		

Weinberg, van Kolck, Savage, Epelbaum, Kaiser, Meißner...

NN forces up to $\mathrm{N}^{3} \mathrm{LO}$ 3 N forces up to $\mathrm{N}^{2} \mathrm{LO}$

NN fitted to:

- NN scattering
- π-N scattering
$3 N$ fitted to:
- ${ }^{3} \mathrm{H}$ Binding Energy
- ${ }^{4} \mathrm{He}$ radius

3N Forces

Treatment of 3 N forces:

normal-ordered 2B: 2 valence, 1 core particle \Rightarrow (effective) Two-body Matrix Elements (TBME)

normal-ordered 1B: 1 valence, 2 core particles
 \Rightarrow (effective) Single particle energies (SPE)

residual 3B:
\Rightarrow Estimated to be suppressed by $N_{\text {valence }} / N_{\text {core }}$

Residual 3N Forces

Results with normal-ordered two-body part of 3 N forces In extreme neutron-rich oxygen isotopes, 3 N forces between 3 valence neutrons can give a relevant contribution

Repulsive residual 3 N contributions
Small compared to normal-ordered 3N force, but increase with N

Very good agreement with resonances in ${ }^{25} \mathrm{O}$ and ${ }^{26} \mathrm{O}$
Caesar, Simonis et al PRC88 034313 (2013)

Challenge: include continuum

Ca isotopes: Masses

Ca isotopes: explore nuclear shell evolution $N=20,28,32$?, 34?

Ca measured from ${ }^{40} \mathrm{Ca}$ core
3 N forces repulsive contribution, chiral NN-only forces too attractive

Flat behavior towards ${ }^{60} \mathrm{Ca}$ does not allow clear prediction of the dripline

Sensitivity to SPEs MBPT (calculated from NN+3N forces) Empirical (from GXPF1 interaction) Estimate of the uncertainty

Two-Neutron separation energies

Compare $S_{2 n}=-[B(N, Z)-B(N-2, Z)]$ with experiment

Precision measurements with TITAN changed AME $2003 \sim 1.74 \mathrm{MeV}$ in ${ }^{52} \mathrm{Ca}$

More flat behavior in ${ }^{50} \mathrm{Ca}-{ }^{52} \mathrm{Ca}$

3 N forces needed in theoretical calculation

Gallant et al. PRL 109032506 (2012)

${ }^{54} \mathrm{Ca}$ and $N=32$ shell closure

Compare $S_{2 n}=-[B(N, Z)-B(N-2, Z)]$ with experiment

Very recently ${ }^{53,54} \mathrm{Ca}$ measured at ISOLDE

Excellent agreement with theoretical prediction
$S_{2 n}$ evolution:
${ }^{52} \mathrm{Ca}-{ }^{54} \mathrm{Ca}$ similar to
${ }^{48} \mathrm{Ca}-{ }^{50} \mathrm{Ca}$, point to
$N=32$ shell closure

Wienholtz et al.
Nature 498346 (2013)

Two-neutron separation energies

Compare $S_{2 n}=-[B(N, Z)-B(N-2, Z)]$ with experiment

Phenomenology masses/gaps as input, differ markedly beyond ${ }^{54} \mathrm{Ca}$

Coupled-Cluster calculations good agreement with adjusted 3N forces

Wienholtz et al.
Nature 498346 (2013)

Shell closures and 2_{1}^{+}energies

Correct closure at $N=28$ when 3 N forces are included

Holt et al. JPG39 085111(2012) Holt, JM, Schwenk, JPG40 075105 (2013)

- 3N forces enhance closure at $N=32$
- 3N forces reduce strong closure at $N=34$ (1.7-2.2 MeV) Measured at 2.04 MeV , suggest $N=34$ shell closure Steppenbeck et al. Nature 502 207(2013)
2_{1}^{+}energy in ${ }^{54} \mathrm{Ca}$ complemented with mass measurements in ${ }^{55,56} \mathrm{Ca}$ confirm magic number $N=34$ and test theoretical calculations

${ }^{48} \mathrm{Ca}$ spectrum

Challenge: doubly-magic nucleus ${ }^{48} \mathrm{Ca}$, $N=28$ shell closure not reproduced with NN forces

Spectra in reasonable overall agreement with experiment
2_{1}^{+}state well reproduced, energy slightly too high
0_{1}^{+}state too low especially compared to phenomenological interactions

$\mathrm{B}(\mathrm{M} 1)$ and $\mathrm{B}(\mathrm{E} 2)$ Transitions

Isotope	Transition	GXPF1A	MBPT	EXP.
${ }^{46} \mathrm{Ca}$	$2^{+} \rightarrow 0^{+}$	9.2	13.3	25.4 ± 4.5
				36.4 ± 2.6
${ }^{46} \mathrm{Ca}$	$6^{+} \rightarrow 4^{+}$	3.6	4.8	5.38 ± 0.29
${ }^{47} \mathrm{Ca}$	$3 / 2^{-} \rightarrow 7 / 2^{-}$	3.6	1.0	4.0 ± 0.2
${ }^{48} \mathrm{Ca}$	$2^{+} \rightarrow 0^{+}$	11.9	10.3	19 ± 6.4
${ }^{49} \mathrm{Ca}$	$7 / 2^{-} \rightarrow 3 / 2^{-}$	4.0	0.22	0.53 ± 0.21
${ }^{50} \mathrm{Ca}$	$2^{+} \rightarrow 0^{+}$	9.1	11.2	7.4 ± 0.2

Proton dripline at $N=8$

Holt, JM, Schwenk PRL110 022502 (2013)

Compare $\mathrm{NN}+3 \mathrm{~N}$ theory to isobaric mass-multiplet formula (IMME) $E\left(A, T, T_{z}\right)=E\left(A, T,-T_{z}\right)+2 b(A, T) T_{z}$

Isospin-symmetry breaking terms predicted by chiral EFT
Coulomb included in calculations
Proton dripline not certain predicted at ${ }^{20} \mathrm{Mg}$ or ${ }^{22} \mathrm{Si}$: $S_{2 p}=-0.12$ (Theory) / +0.01 (IMME)

Excitation spectra for $\mathrm{N}=8$ isotones predicted: ${ }^{20} \mathrm{Mg},{ }^{21} \mathrm{Al},{ }^{22} \mathrm{Si}$

Masses and spectra of $N=20$ isotones

Dripline robustly predicted at ${ }^{46} \mathrm{Fe}$
Good description of ${ }^{48} \mathrm{Ni}$: $S_{2 p}=-1.02$ (Th) vs -1.28(6) (Exp) Pomorski (2012)
Spectra: ideal ground for spectroscopic studies

Summary and Outlook

Shell Model based on chiral EFT (NN+3N forces)
Good agreement with experimental shell evolution and spectroscopy:

- Oxygen dripline, unbound ${ }^{25,26} \mathrm{O}$ reproduced with residual 3 N forces
- Predicted neutron rich Ca $S_{2 n}$'s with NN+3N forces agree with recent measurements of ${ }^{51,52} \mathrm{Ca}$ (TRIUMF) and ${ }^{53,54} \mathrm{Ca}$ (ISOLTRAP)
- Shell structure: prominent closure at $N=32$
- Ca spectroscopy: spectra, electromagnetic strengths
- Dripline and spectra of proton-rich $N=8,20$ isotones predicted

Outlook:

Heavier isotope and isotone chains: include $\mathrm{T}=0$ (pn) TBMEs
Explore uncertainties in the theoretical calculation

Collaborators

ISOLTRAP Collaboration (F. Wienholtz, K. Blaum...)

TITAN Collaboration
(A. Gallant, J. Dilling...)

