The GRETINA science campaign at NSCL and FRIB update

Alexandra Gade NSCL and Michigan State University

Outline

• GRETINA at NSCL

- Selected science examples
 - -Nuclear astrophysics
 - -Benchmarking weak-interaction strength
 - -Nuclear structure physics (N=40)
- FRIB status
- Summary and outlook

GRETINA's time line at NSCL

- April 23, 2012 truck from LBNL at NSCL loading dock
- Week of April 30, 2012 first detectors in the frame
- May/June benchmarking of GRETINA with sources, GRETINA DAQ improvements, combining S800 and GRETINA DAQs
- June 23 first beam in the setup for DAQ commissioning
- July 9, 2012 PAC-approved commissioning run
- July 23, 2012 first run of science campaign
- June 17, 2013 start of last science run (23 experiments later ...)

GRETINA surrounding the target position of the S800 spectrograph

National Science Foundation Michigan State University

With beams from Be (Z=4) to U (Z=92)

Z=82

Nuclear Shell Evolution Nuclear Astrophysics

•Excitation energies in ⁵⁸Zn ✓
 •Measurement with the (d,n) transfer reaction ✓
 •GT strength distributions in ⁴⁵Sc and ⁴⁶Ti ✓

•⁵⁰⁻⁵²Ca neutron knock-out ✓ •Neutron-rich Ti ✓ •Odd neutron-rich Ni ✓ •³⁴Si Bubble nucleus? ✓ •Neutron-rich Si ✓ •GRETINA commissioning ✓ •Neutron-rich *N*=40 nuclei ✓ •Normal and intruder configurations in the Island of Inversion ✓

•*N*=*Z* Mirror Spectroscopy ✓

•Structure in ^{221,223}Rn ✓

Collective Nuclear Structure

N=126

Transition matrix elements in ^{70,72}Ni
 Quadrupole collectivity in light Sn
 •γ-γ spectroscopy in neutron-rich Mg
 •Neutron-rich C lifetime measurement
 •Collectivity at *N=Z* via RDM lifetime measurements
 •B(E2:2→0) in ¹²Be
 •⁷¹⁻⁷⁴Ni excited-state lifetimes
 •Inelastic excitations beyond ⁴⁸Ca
 •Triple configuration coexistence in ⁴⁴S
 •Search for isovector giant monopole resonance

✓ Completed in 2012/2013

Slide adapted from H. L. Crawford

GRETINA at NSCL attracted researchers from all over the world

National Science Foundation Michigan State University

... from Kalamazoo to Abu Dhabi

A. Gade, 2/6/2014, Slide 6

Broad spectrum of science opportunities and experimental techniques - Structure

Nuclear Structure Physics

- Complementary degrees of freedom are accessible
 - Single-particle properties
 » Nucleon knockout
 - » Transfer reactions
 - -Collective degrees of freedom
 - » Excited-state lifetime measurements
 - » Inelastic scattering

Precision excited-state lifetime measurements with the **plunger technique** or **Dopplershift line-shape**

Direct reactions:

- nucleon-removing reactions (knockout)
- Nucleon-adding transfer reactions (light-ion and heavyion induced)

Broad spectrum of science opportunities and experimental techniques - Astro

Nuclear Astrophysics

- Various quantities/observables are accessible
 - Energies of states of astrophysical relevance (e.g. rp process)
 - Any reaction that populates the states on interest
 - Spectroscopic factors or ANCs to restrict Γ_p for relevant excited states which set the (p, γ) rate for some states of astrophysical relevance
 - » (d,n+ γ) transfer reactions
 - Weak-interaction strength to probe input for EC rates
 - » Charge-exchange [(t,³He), (p,n), (⁷Li,⁷Be), ...]

National Science Foundation Michigan State University

Measuring energies of astro-relevant excited states

Fast-beam experiments at NSCL

National Science Foundation Michigan State University

Beams produced and used for experiments with the CCF

Spectroscopy of proton-rich ⁵⁸Zn

Reaction rate dominated by 2⁺ resonances

Spectroscopy of proton-rich ⁵⁸Zn

C. Langer, F. Montes, et al. (2013)

Benchmarking nuclear Hamiltonians for the description of weak interactions strength – Gamow-Teller strength distribution in ⁴⁶Ti

• B(GT) in pf-shell

- Electron capture rates of astrophysical importance: Supernova evolution
- Lightest *pf*-shell nuclei: Shell model's deficiency is possible (Mixing of *pf* & *sd* shells)
- Needs detailed knowledge of the lowest-lying GT transition: Important for EC rates

• Experiment: Charge-Exchange reaction

- ⁴⁶Ti(*t*,³He)⁴⁶Sc measurement
 - » High resolution, wide E_x range
 - » Multipole decomposition analysis: Extract GT based on angular distribution
- Measured γ 's from stopped ^{46}Sc residue

S800 Singles Analysis

Gamow-Teller strength distribution in ⁴⁶Ti

Single-particle structure of neutron-rich N=40 nuclei

Comparisons with SM calculations reveal the importance of mixing to account for the observed decay patterns. The 2_1^+ and 0_2^+ states appear to have similar structure, and the 2_2^+ and 0_3^+ states may as well. Thus, the present data appear to support the shape-coexistence picture of Refs. [10,13].

PHYSICAL REVIEW C 88, 041302(R) (2013)

Configuration mixing and relative transition rates between low-spin states in ⁶⁸Ni

F. Recchia,^{1,*} C. J. Chiara,^{2,3} R. V. F. Janssens,³ D. Weisshaar,¹ A. Gade,^{1,4} W. B. Walters,² M. Albers,³ M. Alcorta,³ V. M. Bader,^{1,4} T. Baugher,^{1,4} D. Bazin,¹ J. S. Berryman,¹ P. F. Bertone,^{3,†} B. A. Brown,^{1,4} C. M. Campbell,⁵
M. P. Carpenter,³ J. Chen,⁶ H. L. Crawford,⁵ H. M. David,^{3,7} D. T. Doherty,^{3,7} C. R. Hoffman,³ F. G. Kondev,⁶ A. Korichi,^{3,8} C. Langer,¹ N. Larson,^{1,9} T. Lauritsen,³ S. N. Liddick,^{1,9} E. Lunderberg,^{1,4} A. O. Macchiavelli,⁵ S. Noji,¹ C. Prokop,^{1,9} A. M. Rogers,^{3,‡} D. Seweryniak,³ S. R. Stroberg,^{1,4} S. Suchyta,^{1,9} S. Williams,¹ K. Wimmer,^{1,10} and S. Zhu³

A. Gade, 2/6/2014, Slide 15

Single-particle structure of neutron-rich N=40 nuclei

Shell evolution around N=40 in neutronrich Ti isotopes

 Event-by-event Doppler reconstructed spectra for ⁶²Cr and ⁵⁸Ti – including nearest neighbor addback (Stay tuned for ⁶⁰Ti)

National Science Foundation Michigan State University

⁵⁰Ti is the last stable titanium isotope

- The structure of neutron-rich Ti-Ni isotopes is subject to shell evolution largely driven by the monopole parts of the pn tensor force
- Excited states are often one of the first benchmarks. Only one excited state was known in ⁵⁸Ti, nothing in ⁶⁰Ti.
- Excited states in ^{58,60}Ti were populated in nucleon removal reactions and will provide first benchmarks towards *N=40* in the Ti isotopes

⁵⁸Ti 6⁰Ti 6²Ti 6⁴Ti

N=40

⁶⁴Ti is the last titanium isotope known to exist

oroton number

Facility for Rare Isotope Beams, FRIB

- Funded by DOE Office of Science Office of Nuclear Physics. T. Glasmacher, Project Director
- Key Feature is 400 kW beam power (5 x10¹³ ²³⁸U/s)
- Separation of isotopes in-flight
 - Fast development time for any isotope
 - Suited for all elements and short half-lives
 - Fast, stopped, and reaccelerated beams

FRI

FRIB history and progress

- 8 June 2009 DOE-SC and MSU sign Cooperative Agreement
- Sept 2010 Critical Decision 1 approved, DOE issues NEPA FONSI
- April 2012 Lehman review, baseline and start of civil construction
 - Project is ready "to establish the performance baseline when funding profile guidance from DOE is provided"
- Oct 2012 Lehman mini review
- February 2013 NSAC Tribble subcommittee states "proceeds with FRIB" even in no-growth budget scenarios. DOE provides funding guidance to FRIB
- August 2013 CD 2/3a approved (baseline, start civil construction April 2014)
- Fall/winter 2013/14 26 reviews prior to CD-3b (all reviews open to DOE and MSU)
 - 6 project-level peer reviews: 2 ASAC, 1 ESAC, 1 ESHAC, 1 PMAC, 1 EVMS
 - 20 technical reviews
- 23-25 April 2014 MSU President's Independent CD-3b review
- 24-26 June 2014 DOE-SC OPS CD-3b review (technical construction)
- Jun 2022 (Dec 2020) CD-4 (early completion)

FRIB Site ready for civil construction

- Ready to begin civil construction upon notice to proceed from DOE-SC
- Site preparation is complete; placement of pilings for the earth retention system is complete
- Live web cameras are linked from <u>frib.msu.edu</u>

Summary and outlook

- GRETINA at NSCL was a great success all 24 runs were completed successfully
- GRETINA is presently being set up at ANL for its second science campaign
- At the 2013 GRETINA User Workshop at ANL, the community endorsed a proposal that will have GRETINA return to NSCL for a second fast beam campaign in 2015
- FRIB is baselined, ready for construction, and managed to early completion in Dec 2020

National Science Foundation Michigan State University

Partners in crime ...

- Some science slides contributed by:
 - Chris Langer and Fernando Montes (MSU)
 - Shumpei Noji and Remco Zegers (MSU)
 - Kathrin Wimmer (CMU)
 - -AG (MSU) and Robert V.F. Janssens (ANL)

Acknowledgement (for getting and keeping GRETINA going at NSCL):

LBNL: I.Y. Lee, A.O. Macchiavelli, C.M. Campbell, H. Crawford, M. Cromaz, C. Lionberger, A. Wiens ORNL: D. Radford, J. M. Allmond

NSCL: **D. Weisshaar**, F. Recchia, T. Baugher, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, M. Scott, D. Smalley, K. Wimmer, and R. Fox (NSCL DAQ), and D. Bazin, S. Williams (S800)

GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL)

