EN Engineering Department

The RILIS and LIST: Status and prospects

Bruce Marsh - EN-STI-LP

ISOLDE Workshop 26th November 2013

- 100% element selective ionization mechanism (isomer selectivity is also possible)
- Can be applied for >30 elements
- Used for >50% ISOLDE runs
- Laser interaction region:
- Hot surface ion source
- LIST RFQ ion guide

- 2-4 laser beams
- Wavelength
- Timing
- Positioning
- Focusing
- 24/7 operation

RILIS LASERS

> 20 m optical path
 3 mm diameter ion source

Proton beam

~10 cm

LabVIEW DAQ

Highlights

• First LIST physics run

RILIS

CURRENT quality factors: Selectivity improvement = 10⁴-10⁵ Efficiency loss = 20x

• Record # of operating hours

• Dual etalon, narrow-band Ti:Sa

RILIS/LARIS projects for LS1 #1

Extension of RILIS cabin

Engineering Department

GENERAL RILIS DEVELOPMENTS

- Enlarged entrance/storage and work area to maximize the useable laser laboratory space
- RILIS machine protection system
 - Installation of a machine protection and monitoring system to reduce reliance on shift-based operation
- Space stabilization of laser beams
 - Upgrade of existing commercial system to enable active stabilization of 3 beams and UV beams
- GPS laser beam launch
 - Replacement of prisms by high-reflectivity dielectric mirrors will reduce the losses of laser power in the beam transport to GPS mass separator
- HRS laser window
 - Extension tube for window mounting outside the 90° magnet will enable monitoring of window quality during operation and simplify its replacement
- Laminar flow box containment of all laser tables
- Improved motorization of Narrow-band TiSa

Laser developments

- Ongoing TiSa R&D
- A dedicated, high power Nd:YVO laser for non resonant ionization
 - High beam quality industrial laser could significantly improve efficiency for many schemes.

• RILIS R&D at ISOLDE offline separator and Mainz RISIKO

Off-line R&D

- Tests of high resistance cavity materials (graphite)
- Improved beam gating method
- ToFLIS project
- LIST improvements/characterization
- RILIS @ VADIS
- Develop RILIS power-meter target
 - Summer student (Alexandra Zadvornaya) worked on this project and tested the unit offline.
- New RILIS/LARIS dye handling/preparation laboratory
 - Under construction in 252-R-002 (next to LARIS lab).
 - Proper equipment, storage and safety measures as requested by HSE
- Installation of a reference cell at RILIS
- Improved motorization of Narrow-band TiSa
- Ionization of refractory metals
 - Study of laser ionization in VADIS cavity
- New and improved RILIS schemes for the Dual RILIS system
 - According to requests from ISOLDE users: **Ba**, Te, Cr, Er, ...

SPECTROSCOPY and IONIZATION SCHEMES

- RILIS technical improvements
- Preparations for on-call operation
- Planned future facilities

Required for:

٠

RILIS room extension

RILIS

New GPS laser beam launch system

Benefits:

4 beams to GPS Fewer power losses Improved ergonomics

STATUS:

Designed by *Sebastian Rothe (Fellow)* Parts ordered RELATED projects/tasks: New reference beam area New beam stabilization system Reference cell installation

Reference cell for RILIS

Thermal atomic beam unit Built by T.Kron (Univ Mainz). Fibre coupling of lasers under investigation by Tom Day Goodacre (CERN)

Benefits:

Non invasive RILIS optimization (not positions) Reference measurements for spectroscopy Scheme development

STATUS:

Assembled and ready for use at ISOLDE offline separator

RELATED projects/tasks:

To be installed at RILIS after construction of new reference area

344 RILIS operator shifts

Until now:

RILIS operation is organized in 8-hours shifts:

4 persons on shift rota + I person on-call

Regular breaks in laser operation are needed for rest: Not more than 3 weeks of work without free days.

2014

On-call operation for all compatible* runs

4-5 people share on-call duties

More time available for R&D (LARIS/Offline) and laser setup

- > 3 weeks continuous operation should be possible
- * Not possible in some difficult cases

ISOLDE RILIS SCHEDULE 2012

115

RILIS machine protection: built and being tested

- **ROBUST and INDEPENDENT system** •
- Hardware to control multiple laser interlocks and shutters •
- Laser dye leak detection / Dye flow detection .
- Sends data to RILIS DAQ / Monitoring system .
- Offline testing round 2 this week •
- Installation in January 2014 •

In collaboration with EN-STI-ICE (Sergio Batuca and Mark Butcher)

Preparation for 'on-call' **RILIS** operation

EN Engineering Department

On-call operation

Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

BEAM INTERACTION WITH MATERIALS AND ATOMS

R.E. Rossel^{a,b,c,*}, V.N. Fedosseev^a, B.A. Marsh^a, D. Richter^c, S. Rothe^{a,b}, K.D.A. Wendt^b

4 requirements for On-Call operation:

I) Machine protection / safety

To avoid risk of equipment damage or danger to personnel. This must be a ROBUST system (PC independent).

2) Performance monitoring

Remote monitoring of key parameters with an alert system to request operator intervention.

3) Automation

To maintain RILIS performance therefore reducing the frequency of operator interventions.

4) Improved environmental conditions

- Better temperature stability.
- Rapid fresh air replacement.
- Improved air cleanliness and dust protection

Continued work of RILIS technical student **Ralf Rossel** and CERN Fellow **Sebastian Rothe**

NEW planned RILIS installations

RILIS

New OFFLINE separator

- Testing of new ionization schemes
- Development of new approaches to laser ion sources
- Study of laser ion interaction in the RF-cooler
- Efficiency measurements

- Hot-cavity RILIS optimization
- Ionization scheme development

- Suppression of surface ions by electrostatic repeller
- Highly selective laser ionization inside the LIST
- Ion guiding towards extraction by transverse rf-trapping field
- Shielding of laser interaction region from high field gradient of extraction electrode

LIST + UCx run for Fr suppression for laser spectroscopy of Po

Suppression of >1000 for most surface ions lonization efficiency reduction by ≈20x (Mg,Po)

RILIS

Daniel Fink (CERN, Univ. Heidelberg) and Sven Richter (Univ. Mainz): PhD work

LIST operation in 2012

RILIS

Daniel Fink (CERN, Univ. Heidelberg) and Sven Richter (Univ. Mainz): PhD work

N Engineering Department

Ongoing LIST development / issues

CURRENT quality factors: Selectivity improvement = 10⁴-10⁵ **Efficiency loss = 20x**

New LIST with thinner RFQ rods:

RII IS

- Loss factor due to laser/atom overlap (>20)
- Secondary ionization mechanisms
- Problem with ion-guide mode at high ion currents
- Time structure studies

LIST mode ion guide efficiency decline at high proton intensity. Daniel Fink, PhD work

Reduced suppression of 212Fr due to: $-> \beta$ + decay of 212Ra in LIST

Currently under further investigation by Sven Richter @ Mainz

Cavity exit sits inside RFQ Ion guide structure: Min cavity \rightarrow repeller distance = minimum loss factor

Hot cavity with tubular heating connecter/heat shield

Quick switching of hot cavity heating polarity is under investigation

Atom beam (and thermionic electrons) does not get deposited on a repeller surface = reduction of secondary ionization mechanisms

Drawing by Sven Richter (Mainz)

Inverted line as an ion repeller

RILIS

Inverted line as an ion repeller

RILIS

High resistance cavity concept

The development of a thin Nb cavity, used in combination with micro-gating, enabled the discovery of ¹²⁹Ag

Production of radioactive Ag beams with a chemically selective laser ion source Y. Jading et al., NIMB 126 (1997) 76-80 Radioactive Ion-Beam Purification workshop CERN, September 4th 2007 J. Lettry CERN ATB

RILIS

A simplified laser system is setup at the off-line ISOLDE mass separator – producing Ga ion beams for testing RILIS cavities

EN Engineering Department

Scheme development for RILIS

<u>LARIS</u>

Ba {(350 (700/2) + (s440-690)}

Li {670 + 610 + (s<820)}

Cr {360 + (531.4, 688, 698) + (s<1260,s<811,s<811)}

Er {391 + 753 + (s<961)}

- Nd:YAG pumped dye laser
- Nd:YAG UV pumped OPO
- Nd:YAG 532nm pumped OPO
- 3 frequency doublers

<u>RILIS</u>

For offline tests of LARIS schemes at end of LS1

RILIS

Once the **reference cell** is installed:

(Cr) {360 + 390 + (within 1000cm^-1 of IP)}

Check efficiency of pre-existing Co & Ge AIS schemes from Leuven/Mainz:

Ge {253 + 910 + 781} 3.3% efficiency at Oakridge

Hg search for AI at RILIS

Calcium scheme development performed during on-line operation

280 15300 1532

II 13

16000

- a) Scans for Auto-ionization states using spare Sirah Dye laser
- b) Al Transitions from two intermediate levels were observed
- c) Enhancement of ionization efficiency of a factor of >10 w.r.t
 50 W green beam for non resonant ionization!
- d) Only possible due to the use of a TiSa for Ist step

LETTER

doi:10.1038/nature12226

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf⁴ & K. Zuber¹⁰

Daniel Fink: PhD work

Calcium scheme development performed during on-line operation

- a) Scans for Auto-ionization states using spare Sirah Dye laser
- b) AI Transitions from two intermediate levels were observed
- c) Enhancement of ionization efficiency of a factor of >10 w.r.t
 50 W green beam for non resonant ionization!
- d) Only possible due to the use of a TiSa for I^{st} step

Daniel Fink: PhD work

Calcium scheme development performed during on-line operation

280 15300 1532

II 13

16000

- a) Scans for Auto-ionization states using spare Sirah Dye laser
- b) Al Transitions from two intermediate levels were observed
- c) Enhancement of ionization efficiency of a factor of >10 w.r.t
 50 W green beam for non resonant ionization!
- d) Only possible due to the use of a TiSa for Ist step

LETTER

doi:10.1038/nature12226

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf⁴ & K. Zuber¹⁰

Daniel Fink: PhD work

EN Engineering Department

Barium scheme @ LARIS

RILIS

New RILIS website

ISOLDE's RILIS

The Resonance Ionisation Laser Ion Source (RILIS) is part of ISOLDE: CERN's radioactive beam facility. The RILIS is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation.

Benefits: Better layout Updated contact and publication info Link to RILIS elements database Correct RILIS scheme info

STATUS

Almost ready! About to go online Link from ISOLDE webpage will be updated

Made by Tom Goodacre (and CERN DRUPAL team)

Acknowledgements

Thank you for your attention

V. Fedosseev, S. Rothe, D. Fink, T. Kron, T. Day Goodacre, V. Mishin, R. Rossel, S. Richter, D. Fedorov, M. Seliverstov, P. Molkanov, K. Wendt

+ EN-STI-ECE: Alessandro MASI, Sergio BATUCA, Mark BUTCHER + EN-STI-RBS: CREPIEUX Bernard, MARZARI Stefano, STORA Thierry, GILES Tim, BARBERO Ermanno, SEIFFERT Christoph

Petersburg Nuclear Physics Institute

