Probing
 Conformal Field Theories

Tomeu Fiol
Universitat de Barcelona

Overview of work done in collaboration with Blai Garolera, Aitor Lewkowycz and Genís Torrents

Probing a CFT

Consider a heavy probe coupled to
CFT, in some rep. of the gauge group.

It may be coupled to additional fields.

Its world-line is prescribed. It defines a line operator (Wilson line,....).

What are the fields it creates? Energy
radiated? Momentum fluctuations?.....

An example: Maxwell theory

Static particle
 $$
<\mathcal{L}(\vec{x})>=q^{2} \frac{1}{|\vec{x}|^{4}}
$$

$$
\mathcal{L} \sim F^{2} \sim E^{2}-\not \mathfrak{B}^{2}
$$

$$
P=\frac{2}{3} q^{2} a^{\mu} a_{\mu}
$$

In today's talk....

Probes will be infinitely heavy.

We will only consider probes in the vacuum state of the CFT.

Plan of the Talk

- \cdot. External Probes in CFTs.
-.S. Computing Bremsstrahlung functions.
- AdS/CFT
- Localization
- S.An application.
- S. Outlook.

Conformal Group

Conformal Transformation

$$
g_{\mu \nu}(x) \rightarrow \Lambda(x) g_{\mu \nu}(x)
$$

d>2
SO (2,d): Poincaré + dilatations + special conformal transformations.

CFTs and local operators

Conformal symmetry gives constraints on

 correlation functions, but it doesn't fix all coefficients.$$
<\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)>=\frac{\delta_{i j}}{(x)^{2 \Delta_{i}(\lambda, N)}}
$$

$<\mathcal{O}_{i}\left(x_{i}\right) \mathcal{O}_{j}\left(x_{j}\right) \mathcal{O}_{k}\left(x_{k}\right)>=\frac{c_{i j k}(\lambda, N)}{\left(x_{i j}\right)^{2 \alpha_{i j k}}\left(x_{i k}\right)^{2 \alpha_{i k j}}\left(x_{j k}\right)^{2 \alpha_{j k i}}}$ coefficients.

Let's add external

 probes...(aka line operators)

Wilson operator, 't Hooft operator,....

Cusped Wilson loop: Radiation

Bremsstrahlung function

$$
\Delta E=2 \pi B(\lambda, N) \int d t(\dot{v})^{2}
$$

Cusped Wilson loop

Cusp anomalous

 dimension$$
<W>\sim e^{-\Gamma_{\text {cusp }}(\varphi, \lambda) \log \frac{L}{\epsilon}}
$$

Line operators and local operators

$$
\begin{aligned}
& \mathcal{O}(x) \\
& \bullet x
\end{aligned}
$$

$$
<\mathcal{O}(x)>_{W} \equiv \frac{\langle\mathcal{O}(x) W>}{<W>}
$$

Line operators and local operators

$$
\begin{aligned}
& \mathcal{O}(x) \\
& \cdot x
\end{aligned}
$$

Conformal symmetry fixes $<\mathcal{O}>_{W}$ up to a coefficient.

$<\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)>_{W}$ is no longer fixed.

Line operators and local operators

$$
\begin{aligned}
& T_{\mu \nu}(x) \\
& \bullet x
\end{aligned}
$$

For a generic CFT

$$
\begin{aligned}
& <T_{00}(x)>_{W}=h(\lambda, N) \frac{1}{|\vec{x}|^{4}} \\
& <T_{i j}(x)>_{W}=h(\lambda, N) \frac{-\delta_{i j}+2 \frac{x_{i} x_{j}}{|\vec{x}|^{2}}}{|\vec{x}|^{4}}
\end{aligned}
$$

Line operators and local operators

For a CFT with \mathcal{L}

$$
\begin{gathered}
\mathcal{L}(x) \\
\bullet x
\end{gathered}
$$

$$
<\mathcal{L}(x)>_{W}=f(\lambda, N) \frac{1}{|\vec{x}|^{4}}
$$

World-line Operators: Displacement Operators

For any line operator in any 4d CFT, we have defined:

$$
\begin{gathered}
<W>\sim e^{-\Gamma_{\text {cusp }}(\varphi, \lambda) \log \frac{L}{\epsilon}} \\
\Delta E=2 \pi B(\lambda, N) \int d t(\dot{v})^{2} \\
\ll \mathbb{D}_{i}\left(t_{1}\right) \mathbb{D}_{j}\left(t_{2}\right) \gg=\tilde{\gamma}(\lambda, N) \frac{\delta_{i j}}{\left(t_{1}-t_{2}\right)^{4}} \\
<T_{00}(x)>_{W}=h(\lambda, N) \frac{1}{|\vec{x}|^{4}} \\
<\mathcal{L}(x)>_{W}=f(\lambda, N) \frac{1}{|\vec{x}|^{4}}
\end{gathered}
$$

These coefficients are actually not independent...

Expand the cusp anomalous dimension at small angles,

$$
\Gamma(\varphi)=\Gamma(\lambda, N) \varphi^{2}+\mathcal{O}\left(\varphi^{4}\right)+\ldots
$$

Then, for any line operator and any 4d CFT,

$$
\Gamma=\frac{\tilde{\gamma}}{12}=B
$$

But wait!, there is more...

Hyperbolic Wilson line: accelerated probe

Hyperbolic Wilson line: accelerated probe

An alternative way to compute energy loss by radiation

$$
P=2 \pi B(\lambda, N) a^{\mu} a_{\mu}
$$

Hyperbolic Wilson line: accelerated probe

BF, Garolera, Torrents 13

$$
\begin{array}{r}
\ll \mathbb{D}_{i}(\tau) \mathbb{D}_{j}(0) \gg=12 B(\lambda, N) \frac{\delta_{i j}}{16 R^{4} \sinh ^{4}\left(\frac{\tau}{2 R}\right)} \\
\kappa=\lim _{w \rightarrow 0} \int d \tau e^{i w \tau} \ll \mathbb{D}_{i}(\tau) \mathbb{D}_{j}(0) \gg=16 \pi^{3} B(\lambda, N) T^{3} \\
\text { Unruh temperature }
\end{array}
$$

Very pretty.... but can we actually compute $B(\lambda, N)$ for any probe in any CFT?

Yes! 1/2-BPS probe coupled ta $1=4$ SU(N) SYM.

Computing the Bremsstrahlung function
Conformal symmetry gives constraints on correlation functions, but it doesn't fix all coefficients.

We need additional tools to compute coefficients:
$\hat{\sim}$ Pert. Theory (finite \mathbf{N}, small λ)
AdS/CFT (large N, large λ)
$\hat{\sim}$ Integrability (large \mathbf{N}, finite λ)
\mathcal{H} Localization (finite \mathbf{N}, finite λ)

External

Probes in AdS/CFT

External Probes in AdS/CFT

Consider a particle in the fundamental representation. Its dual is a fundamental string, reaching the boundary of AdS at the particle wordline.

External Probes in AdS/CFT

In the absence of other scales, the effective charge is

$$
\mathrm{e}_{\square}^{2} \sim \sqrt{\lambda}
$$

It signals screening of the charge at strong coupling.

$$
S_{N G}=-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-|g|}=-\frac{\sqrt{\lambda}}{2 \pi L^{2}} \int d^{2} \sigma \sqrt{-|g|}
$$

First Example: static particle

$$
\begin{aligned}
\mathcal{L}=\frac{1}{2 g_{Y M}^{2}} \operatorname{Tr} & \left(F^{2}+\left[X_{I}, X_{J}\right]\left[X^{I}, X^{J}\right]+\text { fermions }\right) \\
& <\mathcal{L}(\vec{x})>=\cdots, f(\lambda, N) ; \frac{1}{|\vec{x}|^{4}}
\end{aligned}
$$

First Example: static particle

The Lagrangian density is dual to the dilaton.

The string backreaction perturbs the AdS background.

$$
\phi(x)=\int d^{5} x^{\prime} G\left(x, x^{\prime}\right) J\left(x^{\prime}\right)
$$

The dilaton was constant in the unperturbed solution \neg its linearized perturbation decouples.

$$
<\mathcal{L}(\vec{x})>=\frac{1}{16 \pi^{2}} \frac{\sqrt{\lambda}}{|\vec{x}|^{4}}
$$

Second Example: accelerated particle

Mikhailov found the fundamental string dual to a particle following an arbitrary timelike trajectory.

$$
P=\frac{\sqrt{\lambda}}{2 \pi} a^{\mu} a_{\mu}
$$

Second Example: accelerated particle

The world-sheet horizon splits the gluonic cloud into a Coulombic and a radiative part.

$$
E=\int d \sigma \mathcal{E}
$$

External Probes in AdS/CFT

Static Particle

$$
<\mathcal{L}(\vec{x})>=\frac{1}{16 \pi^{2}} \frac{\sqrt{\lambda}}{|\vec{x}|^{4}}
$$

Danielsson et al. Callan, Güijosa 98

Mikhailov 03

Xiao 08

Circular Wilson loop

$$
\ln \left\langle W_{\bigcirc}\right\rangle=\sqrt{\lambda}
$$

$$
V_{q \bar{q}}=-\frac{4 \pi^{2}}{\Gamma^{4}\left(\frac{1}{4}\right)} \frac{\sqrt{\lambda}}{L}
$$

External Probes in AdS/CFT

All these computations yield

$$
B(\lambda, N)=\frac{\sqrt{\lambda}}{4 \pi^{2}}
$$

The $\sqrt{\lambda}$ in these results appears from evaluating classical string solutions to the NG action. There are two types of corrections:
$1 / \sqrt{\lambda}$ world-sheet fluctuations.
Forste, Ghoshal, Theisen 99
Drukker, Gross,Tseytlin 00
....
Buchbinder, Tseytlin
$1 / N \quad$ higher genus world-sheets.

1/N Corrections with AdS/CFT

Probes in higher rank representations

D3, k-units of flux

\checkmark k-symmetric rep.

D5, k-units of flux

k-antisymmetric rep.

Hartnoll, Prem Kumar 06
Yamaguchi
Gomis, Passerini

First Example: static particle

Drukker, BF 05

Again, the D3-brane backreacts on the AdS solution. From the linearized perturbations for the dilaton,

$$
<\mathcal{L}(\vec{x})>_{S_{k}}=\frac{k \sqrt{\lambda} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}}{16 \pi^{2}} \frac{1}{|\vec{x}|^{4}}
$$

Second Example: accelerated particle

We can use a hyperbolic D3-brane to evaluate the energy loss by radiation in hyperbolic motion.

Probes in k -symmetric representation

Static
 Particle

$$
<\mathcal{L}(\vec{x})>_{S_{k}}=\frac{k \sqrt{\lambda}}{16 \pi^{2}} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}} \frac{1}{|\vec{x}|^{4}}
$$

BF, Garolera, Lewkowycz 12
$\begin{aligned} & \text { Accelerated } \\ & \text { Particle }\end{aligned} \quad P=\frac{k \sqrt{\lambda}}{2 \pi} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}} a^{\mu} a_{\mu}$
BF, Garolera 11

$$
\kappa=4 \pi k \sqrt{\lambda} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}} \quad T^{3}
$$

Circular

 Wilson loop$$
\ln \langle W(\bigcirc)\rangle=\frac{k \sqrt{\lambda}}{2} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}+2 N \sinh ^{-1} \frac{k \sqrt{\lambda}}{4 N}
$$

Probes in k -symmetric representation

All these computations yield

$$
B(\lambda, N)=\frac{k \sqrt{\lambda}}{4 \pi^{2}} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}
$$

A priori, not justified to trust this result for $\mathbf{k}=\mathbb{1}$.

$$
\underbrace{\frac{N^{2}}{\lambda^{2}} \gg \overbrace{k \gg}^{\text {SUGRA approx. }}}_{\text {probe approx. }} \text {. }
$$

Probes in k -antisymmetric representation

Universal result:

String world-sheet $\quad \Sigma \hookrightarrow M$ (M Ricci flat: AdS, S-AdS,...)

D5 world-volume $\quad \Sigma \times S^{4} \hookrightarrow M \times S^{5}$

This amounts to

$$
\sqrt{\lambda} \rightarrow \frac{2 N}{3 \pi} \sin ^{3} \theta_{k} \sqrt{\lambda}
$$

where

$$
\sin \theta_{k} \cos \theta_{k}-\theta_{k}=\pi\left(\frac{k}{N}-1\right)
$$

Valid even at finite temperature ! (e.g. drag force)

Exact Results
 for External Probes

An exact Bremsstrahlung function
We will derive the Bremsstrahlung function for an electric $\mathbf{1 / 2}$ BPS probe in the fundamental rep. of $\mathrm{N}=\mathbf{4} \mathbf{U}(\mathrm{N}) \mathbf{S Y M}$.

Our strategy: compute $\left\langle T_{\mu \nu}\right\rangle_{W}=\frac{\left\langle T_{\mu \nu}(x) W_{\bigcirc}\right\rangle}{\left\langle W_{\bigcirc}\right\rangle}$

$$
\begin{aligned}
& T_{\mu \nu}(x) \\
& \bullet x
\end{aligned}
$$

Start with <W>. Recall the Special Conformal Transformation,

Conformal Anomaly!

The anomaly is localized at a point in space-time

It is perturbatively captured by a matrix model.

$$
<W_{\bigcirc}>=\frac{1}{N} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right) e^{\frac{\lambda}{8 N}}
$$

What about $<T_{\mu \nu}(x) W_{\bigcirc}>$?

In $\mathcal{N}=4$ SYM, the Lagrangian density and the stress energy tensor belong to a short multiplet, the supercurrent multiplet.

$$
\mathcal{O}_{2}=\operatorname{Tr}\left(\Phi^{\{I} \Phi^{J\}}\right) \quad T_{\mu \nu} \sim Q^{2} \bar{Q}^{2} \mathcal{O}_{2} \quad \mathcal{L} \sim Q^{4} \mathcal{O}_{2}
$$

$<W_{\bigcirc} \mathcal{O}_{2}(x)>$ is computed with a normal matrix model
Okuyama, Semenoff 06
$<W(\bigcirc)_{\square} \mathcal{O}_{2}>=\frac{\sqrt{2} \lambda}{4 N^{3}}\left[L_{N-1}^{2}\left(-\frac{\lambda}{4 N}\right)+L_{N-2}^{2}\left(-\frac{\lambda}{4 N}\right)\right] e^{\frac{\lambda}{8 N}}$
and finally we arrive at the Bremsstrahlung function for an electric $1 / 2$ BPS probe in the fundamental rep. of $N=4 \mathbf{U}(N) S Y M$,

$$
B_{U(N)}(\lambda, N)=\frac{\lambda}{16 \pi^{2} N} \frac{L_{N-1}^{2}\left(-\frac{\lambda}{4 N}\right)+L_{N-2}^{2}\left(-\frac{\lambda}{4 N}\right)}{L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right)}
$$

It is a rational function (why?)

Equivalently,

$$
B=\frac{1}{2 \pi^{2}} \lambda \partial_{\lambda} \log \left\langle W_{\bigcirc}\right\rangle
$$

B function for higher rank reps.

Strategy: Compute <W> exactly and use

BF, Torrents
work in progress

Define

$$
g=\frac{\lambda}{4 N} \quad, \quad A_{i j}(g)=L_{i}^{j-i}(-g) e^{g / 2}
$$

We find

$$
\begin{aligned}
& <F_{A}(t)>=\sum_{t} t^{N-k}<W_{A_{k}}(g)>=|t+A(g)| \\
& \quad<W_{\mathcal{A}_{k}}(g)>=e^{\frac{k g}{2}} \sum_{j=0}^{k(N-k)} d_{j} \frac{g^{j}}{j!} \quad d_{j} \in \mathbb{N}
\end{aligned}
$$

An application: A benchmark for transport coefficients

Momentum broadening in Q.G.P.

$$
\kappa=g(\lambda, N) T^{3}
$$

Modelling QGP by N=4 SYM: trailing string

Herzog et al. 06
Casalderrey-Solana, Teaney 06
Gubser
$\kappa=\pi \sqrt{\lambda} T^{3}$

SUGRA vs, exact results

$\operatorname{SU}(3)$, finite λ

$$
\begin{aligned}
& \kappa=4 \pi \frac{\lambda}{18} \frac{\lambda^{2}+144 \lambda+3456}{\lambda^{2}+72 \lambda+864} T^{3} \\
& \kappa=4 \pi \sqrt{\lambda} T^{3}
\end{aligned}
$$

Large N , large λ

$$
\kappa=4 \pi \sqrt{\lambda} T^{3} \propto \text { unruh temperature }
$$

Roughly, in this range

$K_{\text {UnPuh }}^{\text {SUGRA }} \approx 2 K_{\text {Unruh }}^{\text {Exact }}$

D the same were true for $K_{\text {thermal }}$

$$
\underbrace{\text { Exact }}_{\text {thermal }} \approx 2 \int D_{\text {thermal }}^{\text {SUGRA }}
$$

push towards QGP value ...

Conclusions and Outlook

The Bremsstrahlung function, the small angle limit of the cusp anomalous dimension, determines many properties of heavy probes coupled to CFTs.

Thanks to localization, the Bremsstrahlung functions of probes in various reps. of $N=4 S U(N)$ SYM can be determined exactly via matrix model computations.

In the regime of validity of SUGRA, these results reduce to functions of $\sqrt{\lambda} / N$, and D-brane probe computations capture them precisely.

Conclusions and Outlook

Compute the full cusp anomalous dimension.
Compute $B(\lambda, N)$ for other probes/CFTs.
Finite mass? (OK with localization).

Adding Flavor
Schwinger effect and critical electric field

$$
E_{c}=\frac{2 \pi m^{2}}{\sqrt{\lambda}}
$$

OBeyond the vacuum state... Finite μ, \mathbf{T} ?

