

PAUL SCHERRER INSTITUT

3rd order PT in its normalized form:

$$G_{PT}(s) = \frac{1}{(1 + a_1 \frac{s}{\omega_0}) \cdot (1 + a_2 \frac{s}{\omega_0} + b_2 \frac{s^2}{\omega_0^2})}$$
(2)

Method	a ₁	a ₂	b ₂
Butterworth	1.0000	1.0000	1.0000
Bessel	0.7560	0.9996	0.4772
Critical damping	0.5098	1.0197	0.2599

R. Künzi Power Filter Design CAS 2014 10.05.2014

2nd order filter - Transferfunction

By expanding (2) and comparing the coefficients with (1) we get:

$$G_{PT}(s) = \frac{1}{\frac{a_1 b_2}{\omega_0^3} s^3 + \frac{(a_1 a_2 + b_2)}{\omega_0^2} s^2 + \frac{(a_1 + a_2)}{\omega_0} s + 1}$$

$$k_1 = R_D C_D = \frac{a_1 + a_2}{\omega_0}$$
(3a)

$$k_2 = L_1(C_1 + C_D) = \frac{a_1 a_2 + b_2}{\omega_0^2}$$
 (3b)

$$k_3 = L_1 C_1 R_D C_D = \frac{a_1 b_2}{\omega_0^3}$$
 (3c)

The 3 independent equations (3a....3c) contain 5 unknowns (L₁, C₁, R_D, C_D and ω_0). Therefore we have the choice to select 2 of them and the remaining 3 depend on that selection.

For a given frequency ω_B well in the blocking area ($\omega_B >> \omega_0$) we can define the desired attenuation G_B . In the blocking area the highest order terms of both the numerator and denominator in equation (1) dominate, therefore (1) can be simplified to:

$$G_B = \frac{R_D C_D s}{L_1 C_1 R_D C_D s^3} = \frac{\frac{a_1 + a_2}{\omega_0} s}{\frac{a_1 b_2}{\omega_0^3} s^3} = \frac{a_1 + a_2}{a_1 b_2} \cdot \frac{\omega_0^2}{s^2} = -\frac{a_1 + a_2}{a_1 b_2} \cdot \frac{\omega_0^2}{\omega_B^2}$$

$$\omega_0 = \omega_B \cdot \sqrt{\frac{|G_B| \cdot a_1 b_2}{a_1 + a_2}} \tag{4}$$

R. Künzi Power Filter Design CAS 2014 10.05.2014

2nd order filter - Definition of L₁

For cost reasons L₁ should be as small as possible, but a too small inductance will result in an excessive ripple current!

The DC-voltage across C_1 is m^*V_{DC} . When the IGBT is on, the current in L_1 increases and the peak-peak ripple current ΔI_{L1} can be calculated:

$$V_{L1} = L_{1} \cdot \frac{di_{L1}}{dt} = V_{DC} - V_{C1} = V_{DC} \cdot (1 - m)$$

$$\Delta I_{L1} = m \cdot T \cdot \frac{di_{L1}}{dt} = m \cdot \frac{1}{f_{s}} \cdot \frac{V_{DC} \cdot (1 - m)}{L_{1}} = \frac{V_{DC} \cdot (1 - m) \cdot m}{f_{s} \cdot L_{1}}$$

$$L_{1} = \frac{V_{DC} \cdot 0.25}{f_{s} \cdot \Delta I_{L1}}$$
(5)

2nd order filter - Definition of L₁

Alternative approach to determine L₁:

- DC-link voltage: 200V
- DC-link current: 500A
- $\Delta I_{L1} \leq 50 \text{App.}$
- C_1 must be $\geq 22mF$ (because of high ripple current)

Design a 2nd order filter for all three given optimization methods and compare the results.

R. Künzi Power Filter Design CAS 2014 10.05.2014

13

2nd order filter – Example 1

Select L_1 to meet the ripple current requirement:

$$L_1 = \frac{v_{1_ripple_pp}}{2 \cdot \pi \cdot f_{ripple} \cdot I_{L1_ripple_pp}}$$
(6)

$$L_1 = \frac{(200 \cdot 0.13)Vpp}{2 \cdot \pi \cdot 300s^{-1} \cdot 50App} = 300\mu H$$

Select C1:

 $C_1 = 22mF$

Calculate the remaining filter elements

(7c, 8, 9)

PAUL	S C H E I	RRER	NST	TUT
	F	E	D	

		Butterworth	Bessel	Critical damping		
		a ₁ = 1.0000	a ₁ = 0.7560	a ₁ = 0.5098		
		a ₂ = 1.0000	a ₂ = 0.9996	a ₂ = 1.0197		
		b ₂ = 1.0000	b ₂ = 0.4772	b ₂ = 0.2599		
	ωB	1.20				
	GB	0.0				
	ω0	5.62*10 ³ s ⁻¹ (894 Hz)	3.60*10 ³ s ⁻¹ (573 Hz)	2.34*10 ³ s ⁻¹ (372 Hz)		
	L ₁	30 µH	30 µH	30 µH		
	C ₁	528 µF	x3 528 µF	528 µF	vQ	
		1'580 µF	2'640 µF	x5 4'220 µF	XO	
	RD	0.22 Ω	0.18 Ω	0.15 Ω		
PAUL SCHERRER INSTITUT		R. Künzi Power F	ilter Design CAS 2014	10.05.2014		19
		2 nd orde	er filter – E	xample 2		
		2 nd orde	er filter – E	Plot 2nd order lowpas	ss filter	
Maximum amplitu	de of	2 nd orde	er filter – E Bode F	Plot 2nd order lowpas	ss filter	
Maximum amplitu Butterworth Bessel	de of	2 nd orde	er filter – E Bode F	Plot 2nd order lowpas	ss filter	
Maximum amplitu Butterworth Bessel Critical dampir	de of	2 nd orde	er filter – E Bode F	Viot 2nd order lowpas	ss filter	
Maximum amplitu Butterworth Bessel Critical dampir	de of	2 nd orde	er filter – E Bode F	vample 2	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3	de of ng	2 nd orde	Bode F	Plot 2nd order lowpas	ss filter	
Maximum amplitu Butterworth Bessel Critical dampir Frequency, for -3 Butterworth	de of ng dB att	2 nd orde	Bode F	vample 2	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel	de of ng dB att	2 nd orde	Bode F	Yot 2nd order lowpas From: C To: Vout	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin	de of ng dB att	2 nd orde	Bode F	vample 2	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin	de of ng dB att	2 nd orde	er filter – E Bode F	Yot 2nd order lowpas From C To: Vout	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin Attenuation: -48d	de of ng dB att ng B @ 2	2 nd orde	Bode F	Viot 2nd order lowpas From: C To: Vout	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin Attenuation: -48df	de of ng dB att ng B @ 2	2 nd orde	Bode F	Plot 2nd order lowpas From: C To: Vout	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin Attenuation: -48d	de of ng dB att ng B @ 2	2 nd orde	er filter – E Bode F	Yot 2nd order lowpas From C To: Vout	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin Attenuation: -48d	de of ng dB att	2 nd orde	Bode F	vample 2	ss filter	
Maximum amplitu Butterworth Bessel Critical dampin Frequency, for -3 Butterworth Bessel Critical dampin Attenuation: -48d	de of ng dB att	2 nd orde	Bode F	Plot 2nd order lowpas From: C To: Vout	ss filter	

Results:

4th order filter - Transferfunction

5th order PT in its normalized form:

$$G_{PT}(s) = \frac{1}{(1 + a_1 \frac{s}{\omega_0}) \cdot (1 + a_2 \frac{s}{\omega_0} + b_2 \frac{s^2}{\omega_0^2}) \cdot (1 + a_3 \frac{s}{\omega_0} + b_3 \frac{s^2}{\omega_0^2})}$$
(11)

Optimisation methods:

	a ₁	a 2	b ₂	a ₃	b ₃
Butterworth	1.0000	1.6180	1.0000	0.6180	1.0000
Bessel	0.6656	1.1402	0.4128	0.6216	0.3245
Critical damping	0.3856	0.7712	0.1487	0.7712	0.1487

R. Künzi Power Filter Design CAS 2014 10.05.2014

PAUL SCHERRER INSTITUT

4th order filter - Transferfunction

By expanding (11) and comparing the coefficients with (10) we get:

$$k_1 = R_D C_D = \frac{a_1 + a_2 + a_3}{\omega_0}$$
(12a)

$$k_2 = L_1(C_1 + C_2 + C_D) + L_2(C_2 + C_D) = \frac{b_3 + a_2a_3 + b_2 + a_1a_3 + a_1a_2}{\omega_0^2}$$
(12b)

$$k_3 = R_D C_D (L_1 C_1 + L_2 C_2 + L_1 C_2) = \frac{a_2 b_3 + a_3 b_2 + a_1 b_3 + a_1 a_2 a_3 + a_1 b_2}{\omega_0^3}$$
(12c)

$$k_4 = L_1 L_2 C_1 (C_2 + C_D) = \frac{b_2 b_3 + a_1 a_2 b_3 + a_1 a_3 b_2}{\omega_0^4}$$
(12d)

$$k_5 = L_1 L_2 C_1 C_2 C_D R_D = \frac{a_1 b_2 b_3}{\omega_0^5}$$
(12e)

PAUL SCHERRER INSTITUT

The 5 independent equations (12a....12e) contain 7 unknowns (L₁, C₁, L₂, C₂, R_D, C_D and ω_0). Therefore we have the choice to select 2 of them (ω_0 and L₁) the remaining 5 depend on that selection.

For a given frequency ω_B well in the blocking area ($\omega_B >> \omega_0$) we can define the desired attenuation G_B. In the blocking area the highest order terms of both the numerator and denominator in equation (10) dominate, therefore (10) can be simplified to:

$$G_{B} = \frac{R_{D}C_{D}s}{L_{1}L_{2}C_{1}C_{2}R_{D}C_{D}s^{5}} = \frac{\frac{a_{1} + a_{2} + a_{3}}{\omega_{0}}s}{\frac{a_{1}b_{2}b_{3}}{\omega_{0}^{5}}s^{5}} = \frac{a_{1} + a_{2} + a_{3}}{a_{1}b_{2}b_{3}} \cdot \frac{\omega_{0}^{4}}{s^{4}} = \frac{a_{1} + a_{2} + a_{3}}{a_{1}b_{2}b_{3}} \cdot \frac{\omega_{0}^{4}}{\omega_{B}^{4}}$$

$$(j)^{4} = +1$$

$$\omega_{0} = \omega_{B} \cdot \sqrt[4]{\frac{G_{B} \cdot a_{1}b_{2}b_{3}}{a_{1} + a_{2} + a_{3}}} \qquad (13)$$

Select L_1 according to ripple current requirements with (5) or (6)

R. Künzi Power Filter Design CAS 2014 10.05.2014

PAUL SCHERRER INSTITUT

4th order filter – Calculating filter elements

By solving the equation system (12a.....12e) we get:

$$L_{2} = \frac{L_{1}}{\frac{(k_{3}k_{4} - k_{2}k_{5})(k_{1}k_{2} - k_{3})}{(k_{1}k_{4} - k_{5})^{2}} - 1} \quad (14a)$$

$$k_{1} = \frac{a_{1} + a_{2} + a_{3}}{\omega_{0}}$$

$$k_{2} = \frac{k_{5}(k_{1}k_{2} - k_{3})}{k_{1}(k_{1}k_{4} - k_{5})(L_{1} + L_{2})} \quad (14b)$$

$$k_{2} = \frac{b_{3} + a_{2}a_{3} + b_{2} + a_{1}a_{3} + a_{1}a_{2}}{\omega_{0}^{2}}$$

$$k_{3} = \frac{a_{2}b_{3} + a_{3}b_{2} + a_{1}b_{3} + a_{1}a_{2}a_{3} + a_{1}b_{2}}{\omega_{0}^{3}}$$

$$k_{3} = \frac{a_{2}b_{3} + a_{3}b_{2} + a_{1}b_{3} + a_{1}a_{2}a_{3} + a_{1}b_{2}}{\omega_{0}^{3}}$$

$$k_{4} = \frac{b_{2}b_{3} + a_{1}a_{2}b_{3} + a_{1}a_{3}b_{2}}{\omega_{0}^{4}}$$

$$k_{5} = \frac{a_{1}b_{2}b_{3}}{\omega_{0}^{5}}$$

4th order filter – Example 3

Comparison of different filter designs

Frequency (Hz)

10⁴

10⁵

 10^{3}

Phase (deg) 081-082

-270

-360 -10²

R. Künzi Power Filter Design CAS 2014 10.05.2014

Practical Aspects – low inductive setup

10¹

5 10²

5 10³

Hz 10⁴

The useful life time of an electrolytic capacitor depends very much on the ripple current and the ambient temperature.

Life time of electrolytic capacitors

The useful life time dramatically decreases at higher ambient temperatures!

R. Künzi Power Filter Design CAS 2014 10.05.2014

37

Thank you for your attention

References

- U. Tietze, Ch. Schenk; Halbleiter-Schaltungs-Technik, 12. Auflage, Pages 815ff
- Epcos, Datasheet, Capacitors with screw terminals Type B43564, B43584, November 2012

Questions?

