

Wir schaffen Wissen - heute für morgen

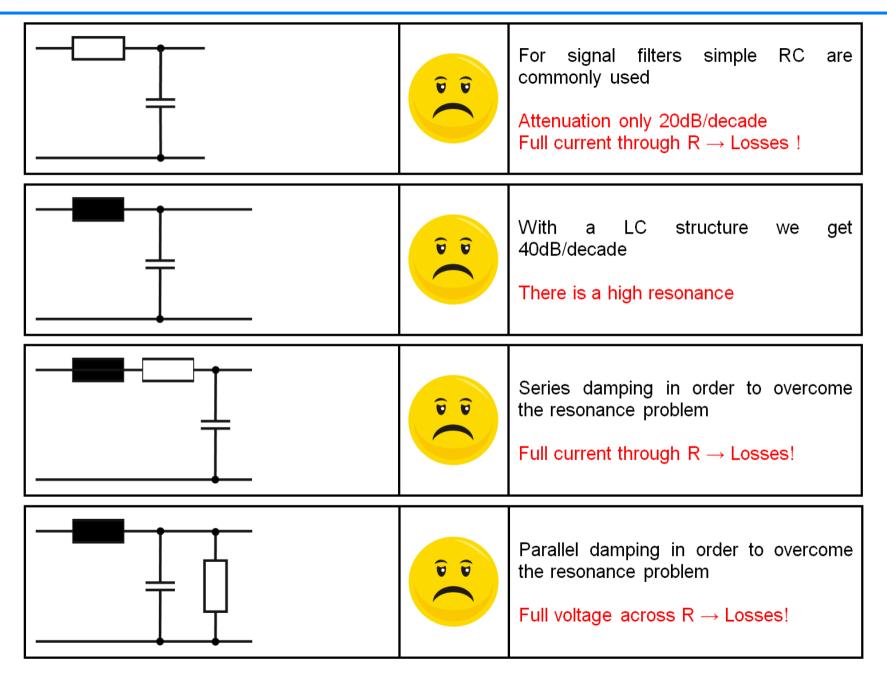
Paul Scherrer Institut

René Künzi

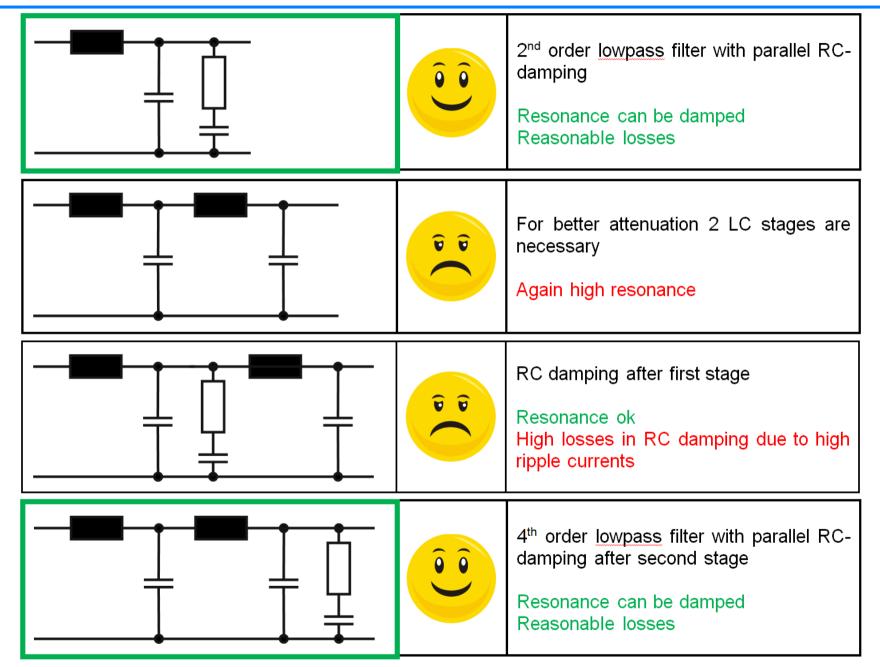
Filter Design - Passive Power Filters

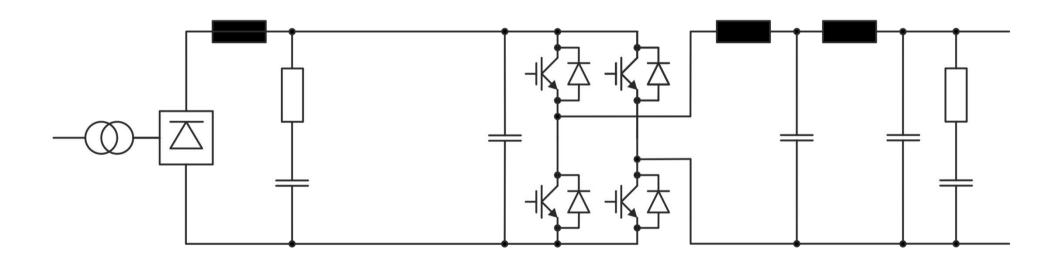
CERN Accelerator School 2014, Baden, Switzerland

Suitable Filter Structures

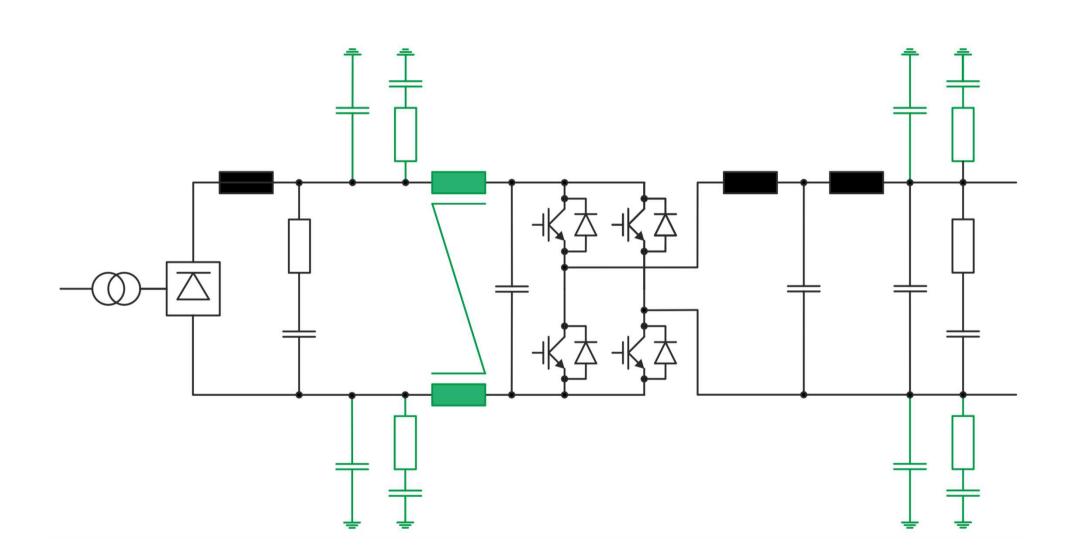


Suitable Filter Structures

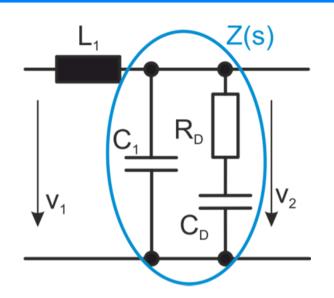




H-Bridge with CM filter



2nd order filter - Transferfunction



$$Z(s) = \frac{1}{C_1 s + \frac{1}{R_D + \frac{1}{C_D s}}} = \frac{R_D C_D s + 1}{C_1 R_D C_D s^2 + (C_1 + C_D) s}$$

$$G(s) = \frac{v_2(s)}{v_1(s)} = \frac{Z(s)}{L_1 s + Z(s)} = \frac{R_D C_D s + 1}{L_1 C_1 R_D C_D s^3 + L_1 (C_1 + C_D) s^2 + R_D C_D s + 1}$$
(1)

$$G(s) = \underbrace{k_1 s + 1}_{k_3 s^3 + k_2 s^2 + k_1 s + 1}_{\text{with}} \qquad \text{with} \qquad k_1 = R_D C_D$$

$$k_2 = L_1 (C_1 + C_D)$$

$$k_3 = L_1 C_1 R_D C_D$$

2nd order filter - Transferfunction

3rd order PT in its normalized form:

$$G_{PT}(s) = \frac{1}{(1 + a_1 \frac{s}{\omega_0}) \cdot (1 + a_2 \frac{s}{\omega_0} + b_2 \frac{s^2}{\omega_0^2})}$$
(2)

Method	a ₁	a ₂	b ₂
Butterworth	1.0000	1.0000	1.0000
Bessel	0.7560	0.9996	0.4772
Critical damping	0.5098	1.0197	0.2599

2nd order filter - Transferfunction

By expanding (2) and comparing the coefficients with (1) we get:

$$G_{PT}(s) = \frac{1}{\frac{a_1 b_2}{\omega_0^3} s^3 + \frac{(a_1 a_2 + b_2)}{\omega_0^2} s^2 + \frac{(a_1 + a_2)}{\omega_0} s + 1}$$

$$k_1 = R_D C_D = \frac{a_1 + a_2}{\omega_0}$$
 (3a)

$$k_2 = L_1(C_1 + C_D) = \frac{a_1 a_2 + b_2}{{\omega_0}^2}$$
 (3b)

$$k_3 = L_1 C_1 R_D C_D = \frac{a_1 b_2}{\omega_0^3}$$
 (3c)

The 3 independent equations (3a....3c) contain 5 unknowns (L_1 , C_1 , R_D , C_D and ω_0). Therefore we have the choice to select 2 of them and the remaining 3 depend on that selection.

2^{nd} order filter - Selection of ω_0

For a given frequency ω_B well in the blocking area ($\omega_B >> \omega_0$) we can define the desired attenuation G_B . In the blocking area the highest order terms of both the numerator and denominator in equation (1) dominate, therefore (1) can be simplified to:

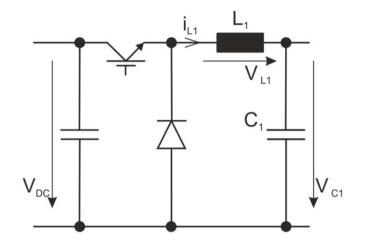
$$G_{B} = \frac{R_{D}C_{D}S}{L_{1}C_{1}R_{D}C_{D}S^{3}} = \frac{\frac{a_{1} + a_{2}}{\omega_{0}}S}{\frac{a_{1}b_{2}}{\omega_{0}^{3}}S^{3}} = \frac{a_{1} + a_{2}}{a_{1}b_{2}} \cdot \frac{\omega_{0}^{2}}{S^{2}} = \frac{a_{1} + a_{2}}{a_{1}b_{2}} \cdot \frac{\omega_{0}^{2}}{\omega_{B}^{2}}$$

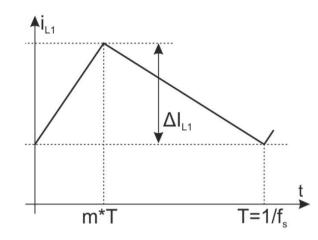
$$(j)^{2} = -1$$

$$\omega_0 = \omega_B \cdot \sqrt{\frac{|G_B| \cdot a_1 b_2}{a_1 + a_2}} \tag{4}$$

2nd order filter - Definition of L₁

For cost reasons L₁ should be as small as possible, but a too small inductance will result in an excessive ripple current!





The DC-voltage across C_1 is m^*V_{DC} . When the IGBT is on, the current in L_1 increases and the peak-peak ripple current ΔI_{L1} can be calculated:

$$V_{L1} = L_1 \cdot \frac{di_{L1}}{dt} = V_{DC} - V_{C1} = V_{DC} \cdot (1 - m)$$

$$\Delta I_{L1} = m \cdot T \cdot \frac{di_{L1}}{dt} = m \cdot \frac{1}{f_S} \cdot \frac{V_{DC} \cdot (1 - m)}{L_1} = \frac{V_{DC} \cdot (1 - m) \cdot m}{f_S \cdot L_1}$$

Maximum 0.25 for m = 0.5

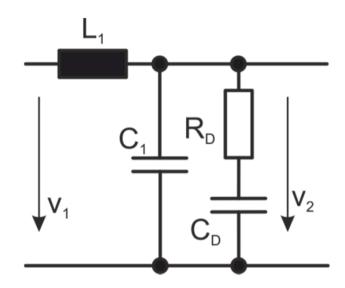
$$L_1 = \frac{V_{DC} \cdot 0.25}{f_S \cdot \Delta I_{L1}} \tag{5}$$

2nd order filter - Definition of L₁

Alternative approach to determine L₁:

$$I_{L1_ripple_pp} = \frac{v_{1_ripple_pp}}{2 \cdot \pi \cdot f_{ripple} \cdot L_1}$$

$$L_1 = \frac{v_{1_ripple_pp}}{2 \cdot \pi \cdot f_{ripple} \cdot I_{L1_ripple_pp}}$$
 (6)



2nd order filter – Calcualting filter elements

Substitute (3a) in (3c) and we receive:

Selection: L₁ and ω₀

Selection: C_1 and ω_0

$$C_1 = \frac{a_1 b_2}{L_1 \omega_0^2 (a_1 + a_2)}$$
 (7a)

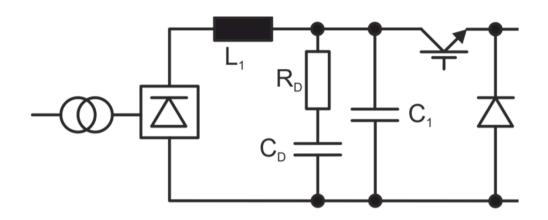
$$L_1 = \frac{a_1 b_2}{C_1 \omega_0^2 (a_1 + a_2)} \quad (7b)$$

$$C_1 = \frac{a_1 b_2}{L_1 \omega_0^2 (a_1 + a_2)}$$
 (7a) $L_1 = \frac{a_1 b_2}{C_1 \omega_0^2 (a_1 + a_2)}$ (7b) $\omega_0 = \sqrt{\frac{a_1 b_2}{L_1 C_1 (a_1 + a_2)}}$ (7c)

Solve (3b) for
$$C_D$$
:

$$C_D = \frac{a_1 a_2 + b_2}{L_1 \omega_0^2} - C_1 \tag{8}$$

$$R_D = \frac{a_1 + a_2}{C_D \omega_0} \tag{9}$$



DC-link voltage: 200V

DC-link current: 500A

• $\Delta I_{L1} \leq 50 \text{App.}$

C₁ must be ≥ 22mF (because of high ripple current)

Design a 2nd order filter for all three given optimization methods and compare the results.

Select L₁ to meet the ripple current requirement:

$$L_1 = \frac{v_{1_ripple_pp}}{2 \cdot \pi \cdot f_{ripple} \cdot I_{L1\ ripple\ pp}} \tag{6}$$

$$L_1 = \frac{(200 \cdot 0.13)Vpp}{2 \cdot \pi \cdot 300s^{-1} \cdot 50App} = 300\mu H$$

Select C1:

$$C_1 = 22mF$$

Calculate the remaining filter elements

(7c, 8, 9)

Results:

	Butterworth	Bessel	Critical damping	
	a ₁ = 1.0000	$a_1 = 0.7560$ $a_1 = 0.5098$		
	$a_2 = 1.0000$	$a_2 = 0.9996$	a ₂ = 1.0197	
	$b_2 = 1.0000$	$b_2 = 0.4772$	b ₂ = 0.2599	
ω_0	275 s ⁻¹	177 s ⁻¹	115 s ⁻¹	
(f ₀)	(44 Hz)	(28 Hz)	(18 Hz)	
L ₁	300 µH	300 µH	300 µH	
C ₁	22 mF	22 mF	_ 22 mF	_ ا
CD	66 mF	X3 110 mF	x5 176 mF ←	3x
R_D	0.11 Ω	0.09 Ω	0.08 Ω	

Maximum amplitude of resonance:

Butterworth 4.5 dB

Bessel (3.1 dB

Critical damping 2.3 dB

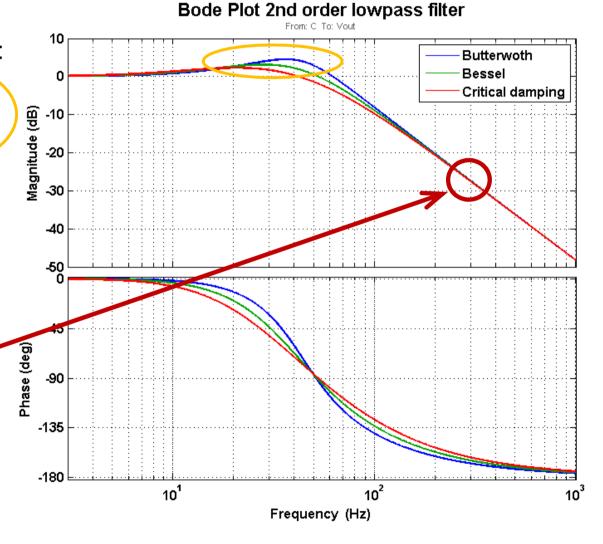
Frequency, for -3 dB attenuation:

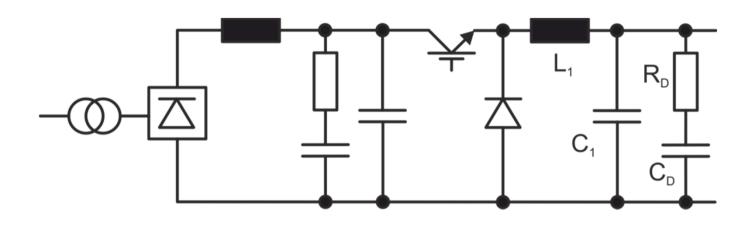
Butterworth 74 Hz

Bessel 67 Hz

Critical damping 59 Hz

Attenuation: -28dB @ 300Hz





- DC-link voltage: 120V
- $f_s = 20kHz$
- $I_{Out_max} = 500A$
- $\Delta I_{L1} \leq 50 \text{App.}$
- Attentuation: $G_B = 250 @ \omega_B = 2*\pi*20kHz$

Same premises as for example 3

Design a 2nd order filter for all three given optimization methods and compare the results.

Select L₁ to meet the ripple current requirement:

$$L_1 = \frac{V_{DC} \cdot 0.25}{f_s \cdot \Delta I_{L1}} = \frac{120V \cdot 0.25}{20kHz \cdot 50A} = 30\mu H \tag{5}$$

Select ω_0 to meet the attenuation requirement:

$$\omega_0 = \omega_B \cdot \sqrt{\frac{|G_B| \cdot a_1 b_2}{a_1 + a_2}} \tag{4}$$

Calculate the remaining filter elements

(7a, 8, 9)

Results:

	Butterworth	Bessel	Critical damping	
	a ₁ = 1.0000	a ₁ = 0.7560	a ₁ = 0.5098	
	$a_2 = 1.0000$	$a_2 = 0.9996$	a ₂ = 1.0197	
	$b_2 = 1.0000$	$b_2 = 0.4772$	$b_2 = 0.2599$	
<u>ω</u> _B	1.26	6*10 ⁵ s ⁻¹ (20)	(Hz)	
G _B	0.00	BdB)		
ω_0	5.62*10 ³ s ⁻¹	3.60*10 ³ s ⁻¹	2.34*10 ³ s ⁻¹	
	(894 Hz)	(573 Hz)	(372 Hz)	
L ₁	30 µH	30 µH	30 µH	
C ₁	528 μF 🛌	528 μF	_ 528 μF 	
C _D	1'580 µF	X ³ 2'640 μF	X5 4'220 µF ←	>
R_D	0.22 Ω	0.18 Ω	0.15 Ω	

Maximum amplitude of resonance:

Butterworth 4.5 dB

Bessel (3.1 dB

Critical damping 2.3 dB

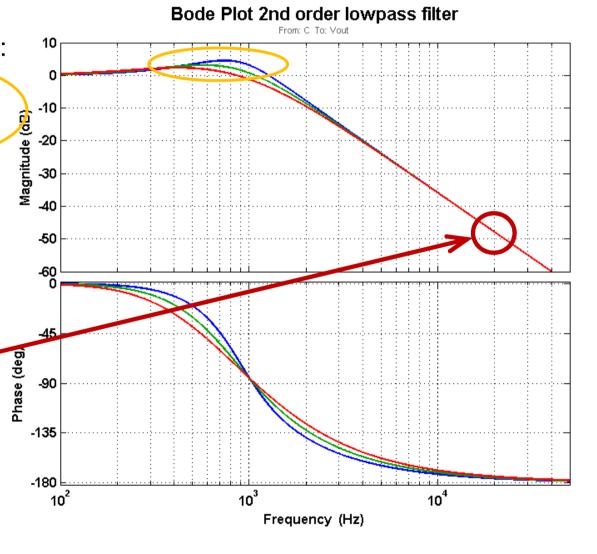
Frequency, for -3 dB attenuation:

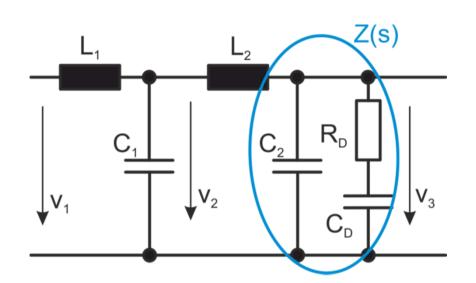
Butterworth 1.5 kHz

Bessel 1.4 kHz

Critical damping 1.2 kHz

Attenuation: -48dB @ 20kHz





$$Z(s) = \frac{1}{C_2 s + \frac{1}{R_D + \frac{1}{C_D s}}} = \frac{R_D C_D s + 1}{C_2 R_D C_D s^2 + (C_2 + C_D) s}$$

$$G(s) = \frac{v_3(s)}{v_1(s)} = \underbrace{\frac{1}{C_1 s + \frac{1}{L_2 s + Z(s)}}}_{C_1 s + \frac{1}{L_2 s + Z(s)}} \cdot \underbrace{\frac{Z(s)}{L_2 s + Z(s)}}_{C_1 s + \frac{1}{L_2 s + Z(s)}} \cdot \underbrace{\frac{Z(s)}{L_2 s + Z(s)}}_{C_2 s + Z(s)}$$

$$G(s) = \frac{R_D C_D s + 1}{L_1 L_2 C_1 C_2 R_D C_D s^5 + (C_2 + C_D) L_1 L_2 C_1 s^4 + [L_1 C_1 R_D C_D + (L_1 + L_2) C_2 R_D C_D] s^3 + \cdots} \cdots \frac{(10)}{\cdots + [L_1 C_1 + (L_1 + L_2) (C_2 + C_D)] s^2 + (R_D C_D s) + 1}$$

$$G(s) = \underbrace{\frac{k_1 s + 1}{k_5 s^5 + k_4 s^4 + k_3 s^3 + k_2 s^2 + k_1 s + 1}}_{\text{th order PT}} \quad \text{with} \quad \begin{aligned} k_1 &= R_D C_D \\ k_2 &= L_1 (C_1 + C_2 + C_D) + L_2 (C_2 + C_D) \end{aligned}$$

$$k_3 &= R_D C_D (L_1 C_1 + L_2 C_2 + L_1 C_2)$$

$$k_4 &= L_1 L_2 C_1 (C_2 + C_D)$$

$$k_5 &= L_1 L_2 C_1 C_2 C_D R_D$$

5th order PT in its normalized form:

$$G_{PT}(s) = \frac{1}{(1 + a_1 \frac{s}{\omega_0}) \cdot (1 + a_2 \frac{s}{\omega_0} + b_2 \frac{s^2}{\omega_0^2}) \cdot (1 + a_3 \frac{s}{\omega_0} + b_3 \frac{s^2}{\omega_0^2})}$$
(11)

Optimisation methods:

	a ₁	a ₂	b ₂	a ₃	b ₃
Butterworth	1.0000	1.6180	1.0000	0.6180	1.0000
Bessel	0.6656	1.1402	0.4128	0.6216	0.3245
Critical damping	0.3856	0.7712	0.1487	0.7712	0.1487

By expanding (11) and comparing the coefficients with (10) we get:

$$G_{PT}(s) = \frac{1}{\frac{a_1b_2b_3}{\omega_0^5}s^5 + \frac{(b_2b_3 + a_1a_2b_3 + a_1a_3b_2)}{\omega_0^4}s^4 + \frac{(a_2b_3 + a_3b_2 + a_1b_3 + a_1a_2a_3 + a_1b_2)}{\omega_0^3}s^3 \cdots}$$

$$\cdots + \frac{(b_3 + a_2a_3 + b_2 + a_1a_3 + a_1a_2)}{{\omega_0}^2} s^2 + \frac{(a_1 + a_2 + a_3)}{{\omega_0}} s + 1$$

$$k_1 = R_D C_D = \frac{a_1 + a_2 + a_3}{\omega_0} \tag{12a}$$

$$k_2 = L_1(C_1 + C_2 + C_D) + L_2(C_2 + C_D) = \frac{b_3 + a_2a_3 + b_2 + a_1a_3 + a_1a_2}{\omega_0^2}$$
(12b)

$$k_3 = R_D C_D (L_1 C_1 + L_2 C_2 + L_1 C_2) = \frac{a_2 b_3 + a_3 b_2 + a_1 b_3 + a_1 a_2 a_3 + a_1 b_2}{\omega_0^3}$$
(12c)

$$k_4 = L_1 L_2 C_1 (C_2 + C_D) = \frac{b_2 b_3 + a_1 a_2 b_3 + a_1 a_3 b_2}{\omega_0^4}$$
(12d)

$$k_5 = L_1 L_2 C_1 C_2 C_D R_D = \frac{a_1 b_2 b_3}{\omega_0^5}$$
 (12e)

4^{th} order filter – selection of ω_0 and L_1

The 5 independent equations (12a....12e) contain 7 unknowns (L_1 , C_1 , L_2 , C_2 , R_D , C_D and ω_0). Therefore we have the choice to select 2 of them (ω_0 and L_1) the remaining 5 depend on that selection.

For a given frequency ω_B well in the blocking area ($\omega_B >> \omega_0$) we can define the desired attenuation G_B . In the blocking area the highest order terms of both the numerator and denominator in equation (10) dominate, therefore (10) can be simplified to:

$$G_{B} = \frac{R_{D}C_{D}S}{L_{1}L_{2}C_{1}C_{2}R_{D}C_{D}S^{5}} = \frac{\frac{a_{1} + a_{2} + a_{3}}{\omega_{0}}S}{\frac{a_{1}b_{2}b_{3}}{\omega_{0}}S^{5}} = \frac{a_{1} + a_{2} + a_{3}}{a_{1}b_{2}b_{3}} \cdot \frac{\omega_{0}^{4}}{S^{4}} = \frac{a_{1} + a_{2} + a_{3}}{a_{1}b_{2}b_{3}} \cdot \frac{\omega_{0}^{4}}{\omega_{B}^{4}}$$

$$(j)^{4} = +1$$

$$\omega_0 = \omega_B \cdot \sqrt[4]{\frac{G_B \cdot a_1 b_2 b_3}{a_1 + a_2 + a_3}} \tag{13}$$

Select L₁ according to ripple current requirements with (5) or (6)

4th order filter – Calculating filter elements

By solving the equation system (12a.....12e) we get:

$$L_2 = \frac{L_1}{\frac{(k_3k_4 - k_2k_5)(k_1k_2 - k_3)}{(k_1k_4 - k_5)^2} - 1}$$
 (14a)

$$C_2 = \frac{k_5(k_1k_2 - k_3)}{k_1(k_1k_4 - k_5)(L_1 + L_2)}$$
 (14b)

$$C_1 = \frac{k_5}{k_1 L_1 L_2 C_2} \tag{14c}$$

$$R_D = \frac{k_1 k_5}{C_2 (k_1 k_4 - k_5)} \tag{14d}$$

$$C_D = \frac{k_1}{R_D}$$

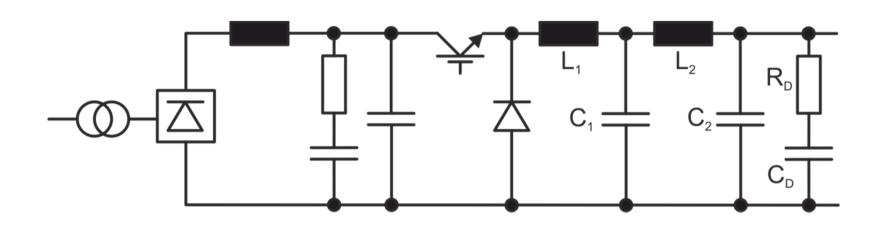
$$k_1 = \frac{a_1 + a_2 + a_3}{\omega_0}$$

$$k_2 = \frac{b_3 + a_2 a_3 + b_2 + a_1 a_3 + a_1 a_2}{{\omega_0}^2}$$

$$k_3 = \frac{a_2b_3 + a_3b_2 + a_1b_3 + a_1a_2a_3 + a_1b_2}{\omega_0^3}$$

$$k_4 = \frac{b_2 b_3 + a_1 a_2 b_3 + a_1 a_3 b_2}{\omega_0^4}$$

$$k_5 = \frac{a_1 b_2 b_3}{\omega_0^5}$$



- DC-link voltage: 120V
- $f_s = 20kHz$
- **I**_{Out_max} = 500A
- $\Delta I_{L1} \leq 50 \text{App.}$
- Attentuation: $G_B = 250 @ \omega_B = 2*\pi*20 \text{kHz}$

Same premises as for example 2

Design a 4th order filter for all three given optimization methods and compare the results.

Select L₁ to meet the ripple current requirement:

$$L_1 = \frac{V_{DC} \cdot 0.25}{f_s \cdot \Delta I_{L1}} = \frac{120V \cdot 0.25}{20kHz \cdot 50A} = 30\mu H \tag{5}$$

Select ω_0 to meet the attenuation requirement:

$$\omega_0 = \omega_B \cdot \sqrt[4]{\frac{G_B \cdot a_1 b_2 b_3}{a_1 + a_2 + a_3}} \tag{13}$$

Calculate the remaining filter elements

(14a...e)

Results:

	Butterworth	Bessel	Critical damping		
	$a_1 = 1.0000$	a ₁ = 0.6656	$a_1 = 0.3856$		
	•	•	·		
	$a_2 = 1.6180$	a ₂ = 1.1402	$a_2 = 0.7712$		
	b ₂ = 1.0000	$b_2 = 0.4128$	$b_2 = 0.1487$		
	$a_3 = 0.6180$	a ₃ = 0.6216	a ₃ = 0.7712		
	$b_3 = 1.0000$	$b_3 = 0.3245$	$b_3 = 0.1487$		
ω_{B}	1.3	26*10 ⁵ s ⁻¹ (20kH	z)		
G _B	0.004 (-48dB)				
	2.36*10 ⁴ s ⁻¹	1.38*10 ⁴ s ⁻¹	8.15*10 ³ s ⁻¹		
ω_0	(3.8 kHz)	(2.2 kHz)	(1.3 kHz)		
L ₁	30 µH	30 µH	30 µH		
L ₂	57 µH	31 µH	17 µH		
C ₁	74 µF	90 μF	124 µF		
C ₂	7.9 µF	12 µF	16 µF		
CD	75 µF	168 µF	382 μF		
R_D	1.83 Ω	1.04 Ω	0.62 Ω		

Bode Diagram 4th order lopass filter

Maximum amplitude of resonance:

Butterworth 8.6 dB

Bessel (5.4 dB

Critical damping 3.8 dB

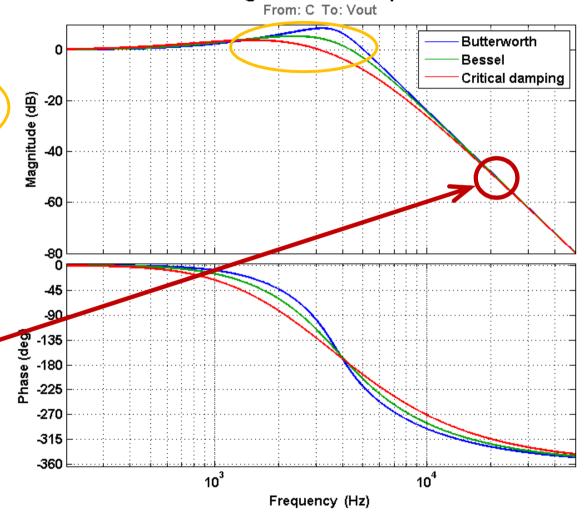
Frequency, for -3 dB attenuation:

Butterworth 5.5 kHz

Bessel 5.0 kHz

Critical damping 3.9 kHz

Attenuation: -48dB @ 20kHz



Comparison of different filter designs

Design 1 4th order

Acc. to example 3

Optimisation: Bessel

$$L_1 = 30 \mu H$$

$$L_2 = 31 \, \mu H$$

$$C_2 = 12 \mu F$$

$$C_D = 168 \, \mu E$$

$$R_D = 1.04 \Omega$$

$$f_0 = 2'200 \text{ Hz}$$

Design 2 2nd order

Acc. to example 2

Optimisation:
Bessel

$$L_1 = 30 \mu H$$

$$C_1 = 528 \mu F$$

$$C_D = 2'600 \mu F$$

$$R_D = 0.18 \Omega$$

$$f_0 = 573 \text{ Hz}$$

Design 3 2nd order

Acc. to example 2 but $L_1 = 100 \mu H$

Optimisation: Bessel

$$L_1 = 100 \mu H$$

$$C_1 = 158 \mu F$$

$$C_D = 790 \, \mu F$$

$$R_D = 0.62 \Omega$$

$$f_0 = 573 \text{ Hz}$$

Design 4 2nd order

Acc. to example 2 but $L_1 = 100 \mu H$ and $G_B = 0.01$

Optimisation:
Bessel

$$L_1 = 100 \mu H$$

+64%

$$C_1 = 63 \mu F$$

+42%

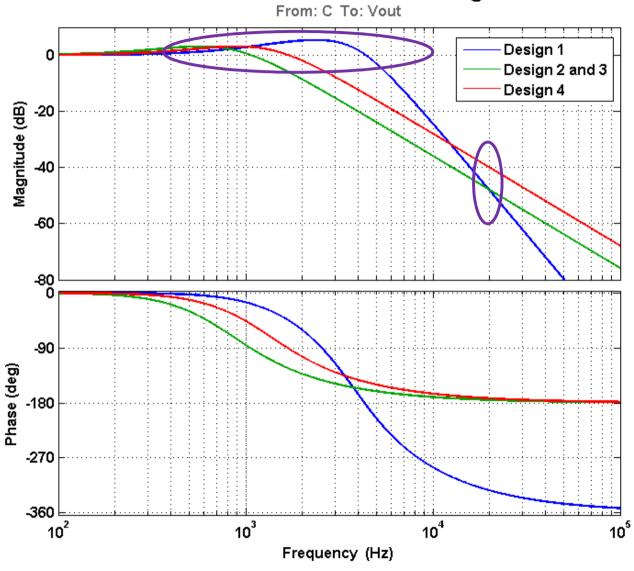
$$C_D = 320 \mu F$$

$$R_D = 0.98 \Omega$$

$$f_0 = 907 \text{ Hz}$$

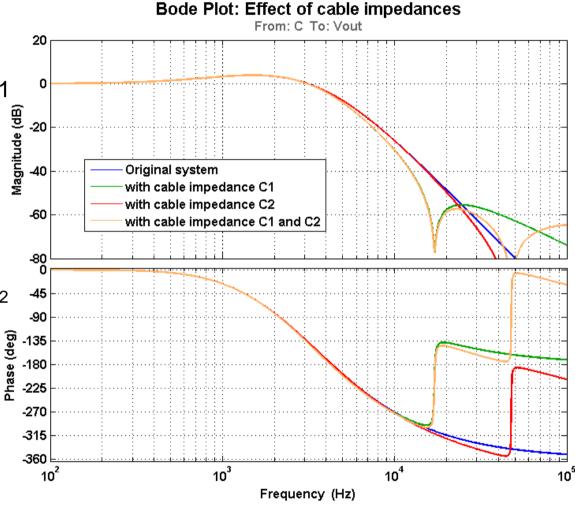
Comparison of different filter designs

Bode Plots of different filter designs



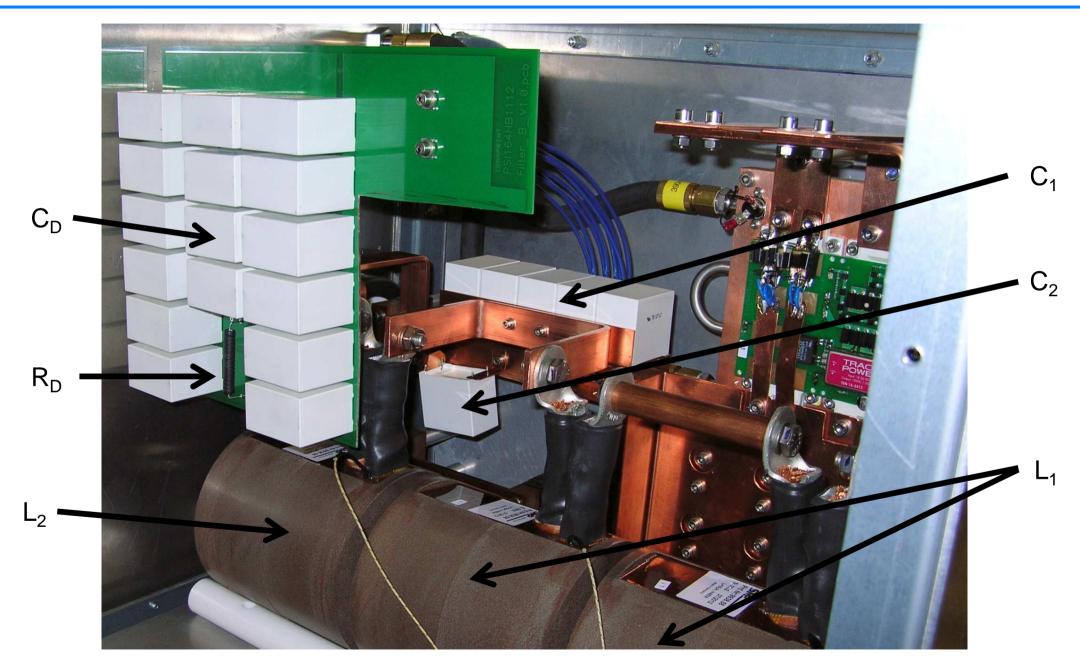
Practical Aspects - Wiring

- Effect of a 0.5m long wire 16mm² (wiring of C₁ and C₂)
 - Skin Effect
 - Skin depth in Cu @ 20kHz: 0.5mm
 - Reduces the effective cross section to 6.3 mm²
 - Wire resistance @ 20kHz: 1.4mΩ
 - Wire inductance is approx. 0.5µH



To be avoided!

Practical Aspects – low inductive setup



Life time of electrolytic capacitors

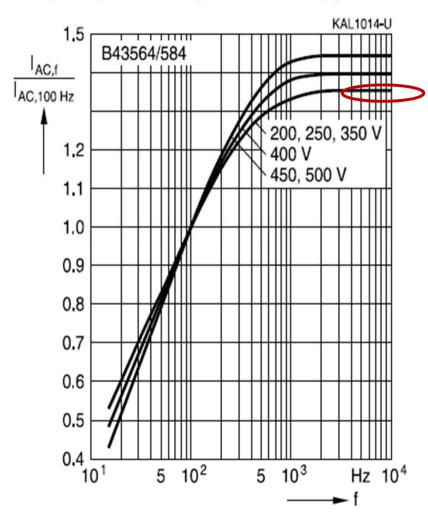
The useful life time of an electrolytic capacitor depends very much on the ripple current and the ambient temperature.

C _R 100 Hz 20 °C μF	Case dimensions d × I mm	ESR _{typ} 100 Hz 20 °C mΩ	Z _{max} 10 kHz 20 °C mΩ	I _{AC,max} 100 Hz 40 °C	I _{AC.B} 100 Hz 85 °C A	I _{AC,R} (B) 100 Hz 85 °C A	Ordering code (composition see below)
$V_{R} = 200$	V DC						
3300	51.6 × 80.7	40	48	21	7.9	15.3	B435*4E2338M0##
4700	51.6 × 105.7	29	35	27	10.1	17.6	B435*4E2478M0##
4700	64.3 × 80.7	29	35	27	10.0	18.6	B435*4F2478M0##
6800	64.3×105.7	21	25	34	12.6	22.0	B435*4E2688M0##
8200	76.9×105.7	17	20	41	15.2	26.8	B435*4E2828M0##
10000	76.9×105.7	14	17	47	17.4	32.8	B435*4E2109M0##
15000	76.9×143.2	8	10	57	25.6	43.6	B435*4E2159M0##
22000	91.0×144.5	5	6	80	35.9	63.6	B435*4E2229M0##

- Nominal ripple current at
 - nominal frequency (100Hz) and
 - nominal capacitor temperature (85°C).
 - 17.4A in our example

Life time of electrolytic capacitors

Frequency factor of permissible ripple current I_{AC} versus frequency f



Apply frequency factor:

For 10kHz a current factor of 1.35 is applicable

→ 23.5A @ 10kHz

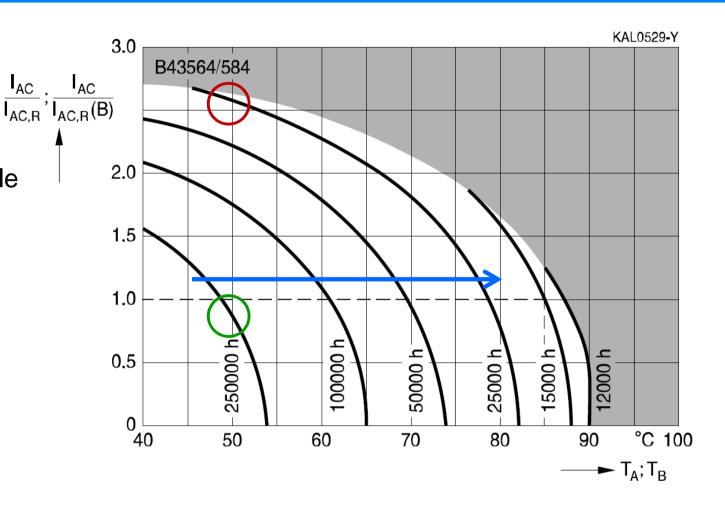
Life time of electrolytic capacitors

Determine the allowed ripple current for a desired useful life and Ta:

AC

For 25'000h (3 years) and $Ta = 50^{\circ}C$, \rightarrow 2.6 * 23.5A = 61A

For 250'000h (30years) and $Ta = 50^{\circ}C$ $\rightarrow 0.85 * 23.5A = 20A$



The useful life time dramatically decreases at higher ambient temperatures!

Thank you for your attention

References

- U. Tietze, Ch. Schenk; Halbleiter-Schaltungs-Technik, 12. Auflage, Pages 815ff
- Epcos, Datasheet, Capacitors with screw terminals Type B43564, B43584, November 2012

Questions?

