

Structure
> Why long pulses?
> Where are long pulse modulators used?
 Basics
 RF-Station
 Klystron
> Modulators
 Passive components
 Active components
Connection to the mains
> EMI aspects
> Next developments
Hans-Jörg Eckoldt CERN Accelerator School Baden May 2014 Page 2

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Typical data of available klystrons		
Klystron today		
Frequency Range:	~350MHz to ~17GHz XFEL 1.3 GHz	
Output Power:	CW: up to ~1.3MW Pulsed: up to ~200MW at ~1µs up to ~10MW at ~1ms	
Klystron Gun Voltage:	DC: ~100kV Pulsed: ~600kV at ~1μs ~130kV at ~1ms	
COO The Construction Local	Hans-Jörg Eckoldt CERN Accelerator School Baden May 2014 Page 10	

Definition of the pulse		
> Rise time	time from the beginning up to the flat top, often it is defined as 10% to 90 or 99%	
> Flat top	time when the pulse is at the klystron operation voltage, variations lead to RF- phase shifts that have to be compensated by the LLRF. The flat top is defined as $+/-x\%$ of the voltage	
> Fall time	Time the modulator voltage needs to go down	
> Reverse voltage	undershoot allowed neg. voltage (about 20%)	
Repetition frequency	Frequency of pulse repetition	
Pulse to pulse stability	Repetitive value of the flat top.	
the CERN Accelerate Stores	Hans-Jörg Eckoldt CERN Accelerator School Baden May 2014 Page 16	

9

10

11

Stored energy in the transformer		
Stray inductance	> Main inductance	
$E_{stored Ls} = \frac{1}{2} * L * I_{short circuit}^{2}$ Ls XFEL transformer = 200 µH	$E_{stored LM} = \frac{1}{2} * L * I_{mag.}^{2}$ Lmain XFEL transformer 5 H	
$E_{storedLs} = \frac{1}{2} * 200 \mu H * 2000 A^2$	$I_{Mag} = \frac{U * t}{L}$ U= 10 kV, t=time of arc 0-1.7ms	
$E_{storedLs} = 400J$	$I_{Magmax} = \frac{10kV * 1.7ms}{5 H} = 3.4 \text{ A}$ $E_{stored LM} = \frac{1}{2} * 5H * 3.4A^2 = 28.9 \text{ J}$	
Stored energy = 428.9 J		
Hans-J	örg Eckoldt CERN Accelerator School Baden May 2014 Page 28	

Conclusion

- A lot of interesting R&D was done the last few years and different topologies are available on the market
- There is a lot of development ongoing in the near future which is possible to new and better semiconductors.
- > In the near future several large projects will use long pulse modulators:
 - XFEL commissioning
 - European Spallation Source
 - International Linear Collider
 - Project X
 - CLIC

> Power electronic engineers will have a lot of fun.

