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Introduction 

In this talk,  

 I will try to answer to questions raised in ‘power converter requirements’  

 I will try to propose a list  of solutions,  

    of tricks,  

    of recommendations,  

    of warnings…. 
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 B-field uncertainty / accelerator operation 

 Circuit layout  

 Energy saving 

 Capacitor ageing 

 EMC / grounding 

 IGBT ageing 

 Control performance 
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In most of the synchrotrons, all the magnets (quadrupole, sextupole, orbit correctors,…) 
are current control and the beam energy is controlled by the dipole magnet current. 

 

To mitigate the B-Field uncertainty, the solutions are : 

- Use the degauss or pre-cycle technique 

- Get a high-precision magnetic field model (10-4) 

- beam steering application for orbit and trajectory correction 

- Real time orbit feedback system 

- Real time tune feedback 

- Real time chromaticity feedback 

Or / and 

- Real-time magnetic field measurement and control (10-4) 

 needs an extra magnet outside the machine with instrumentation in its gap. 
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Solution for B-field uncertainty 
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To solve this problem of hysteris, the classical degauss technique is used.  

For a machine working always at the same beam energy, few cycles at beam energy will 
degauss the magnets. Example LHC precycle. 

For machine or transfer line with different beam energies, the degauss has to take place 
at each cycle. Solution, always go at full saturation in each cycle.  
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Solution degauss technique 
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Reference magnet with B-field measurement. 
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Solution B-field control 
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The LHC has a magnetic model. 

Accelerator physicists use the FiDeL tool to generate the current reference. 
The aim is to provide the integral transfer function (integral field vs. current) in a form suitable for inversion (current vs. integral 

field) for each circuit in the LHC. In addition, for the main ring magnets FiDeL will provides a prediction of the field errors to be 

used to set the corrector circuits. 
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Solution: Magnetic Model  
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https://lhc-div-mms.web.cern.ch/lhc-div-mms/tests/MAG/Fidel/ 
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First LHC Beam 2 around the ring 

1. Beam to TDI 

2. Beam to IR7 

3. Beam to IR6 

4. Beam to CMS 

5. Beam to IR3 

Steve Myers report 

beam steering application for orbit and trajectory correction 

= operator tool 

https://jwenning.web.cern.ch/jwenning/do

cuments/YASP/YASP-user-guide.pdf 

 

Solution: beam steering  

https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
https://jwenning.web.cern.ch/jwenning/documents/YASP/YASP-user-guide.pdf
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First LHC Beam2 around the ring 

1. Beam to TDI 

2. Beam to IR7 

3. Beam to IR6 

4. Beam to CMS 

5. Beam to IR3 

6. Beam to ALICE 

Steve Myers report 
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First LHC Beam2 around the ring 

1. Beam to TDI 

2. Beam to IR7 

3. Beam to IR6 

4. Beam to CMS 

5. Beam to IR3 

6. Beam to ALICE 

7. Beam to ATLAS 

8. Beam to LHCb – First Turn ! 

Steve Myers report 



The LHC has an orbit feedback system.  

It needs BPM (Beam Position Monitors). The feedback controller acts on the orbit 
corrector magnets 
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Solution orbit feedback 
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http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1 

Dynamic compensation 

https://jwenning.web.cern.ch/jwenning/documents/Orbit/FB/Snapb-

EPAC02.pdf 

 

http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
http://cds.cern.ch/record/1054849/files/thesis-2007-058.pdf?version=1
https://jwenning.web.cern.ch/jwenning/documents/Orbit/FB/Snapb-EPAC02.pdf
https://jwenning.web.cern.ch/jwenning/documents/Orbit/FB/Snapb-EPAC02.pdf
https://jwenning.web.cern.ch/jwenning/documents/Orbit/FB/Snapb-EPAC02.pdf
https://jwenning.web.cern.ch/jwenning/documents/Orbit/FB/Snapb-EPAC02.pdf


When the circuits are split: 

 

- The tracking error shall be limited (control performance) 

- The magnet hysteresis shall be reset (pre-cycle) 

 

 Recommendation: 

Place the same controller in front of all the power converters. 

 

Example:  

LHC tracking error between 

the 8 sectors 
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Solution for individual powering 
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Solution for nested circuits 
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Nested powering scheme can be a nightmare for power engineers !! 

 

Very complex control, it is like a car with many drivers having a steering wheel 
acting on only one wheel. 
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Reduce capital cost but decrease availability! 



Solution for nested circuits 
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Very difficult to operate and repair, long MTTR. 

 

All converters have to talk each others. 

 

Need a decoupling matrix to avoid fight between converters 
! 
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Solution for nested circuits 
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Look at the current and voltage of RQX while RTQX2 current is changing! 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nested circuits aren’t RECOMMANDED ! 

LHC inner triplet works perfectly well but MTTR is much higher. 

RHIC had many difficulties with nested circuits.  

 



Solution for HL-LHC 
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For the LHC upgrade project (High-Lumi LHC), the inner triplet magnet will be 
replaced by new ones with a larger aperture. 

 

The solution proposed is to have one power converter for Q2a-b magnets and one 
for Q1 – Q3 magnets! 

It still requires trim power converters to have the full flexibility with beam optics. 

 

Simpler powering scheme! 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solution for large dipole circuit 
The SPS have 744 dipole magnets. The total voltage applied is 24kV for 6kA. 

 

12 power converters are placed between series of magnets. Each power converter is 
rated at 2kV. The maximum voltage to ground of the magnet is then 2kV. 

 

Large reduction of insulation constraint on the magnets! 
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Solution for magnet grounding 
With a resistor, an earth fault can’t be detected close to the polarity connected to 
earth. 

Solution: active detection 
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Earthing Circuit: Passive Detection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages 

•  Simple 

 

 

Drawbacks 

•  Fuse status unknown 

•  Dead zones for low voltage drops 

 

Earthing Circuit: Active Detection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages 

•  Earth fault detection before energisation 

•  Fuse status known 

•  No dead zone for low voltage drops and 1-

quadrant converters 

 

Drawbacks 

•  Dead zones for high voltage drops since 

common mode voltage must be kept limited 

to few volts (safety reasons) 

Earthing Circuit: Active / Passive 

Detection (dynamic selection) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Advantages 

•  Earth fault detection before energisation 

•  Useful for high voltage drops when 

passive detection is preferable 

 

Drawbacks 

•  Dead zones for low voltage drops  
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https://edms.cern.ch/file/997662//PAC2009_Earth-Current-Monitoring-Circuit-for-Inductive-Loads.pdf 
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Linac’s and transfer lines 

LINAC4 : Beam is passing through in one shot, with a given time period; 

 

 

 

 

 

 

 

 

 

 

Most of the magnets and all klystrons are pulsed. 

 

t (s) 

B (T), 

I (A) 

Beam passage 

Solution for energy saving 
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800µs 

500ms 

Beam duty cycle : 0.016% 
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New topologies for discharged converters. 

 

- Fast ramp-up (IGBT polarity switches) 

- Flat top control (active filter or IGBT in 
linear mode) 

 

Energy saved compared to DC powering = 99.4% 

 

 

 

 

Solution for energy saving 
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New concept for energy management 
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• From 1.4Gev to 2GeV   

 

• Magnet saturation effect 

 

• Same ramp-up time  

 

• Increase ramp-up time to keep the same 
RMS current in the magnets 

B-field: x1.3 

 

Peak Current: x1.5 

 

Power: x1.8 

 

Peak Power: x2 

 New challenging Main Power Supply 

Project of beam energy increase at the Booster 

 

Present power converter:  

4 thyristor bridges in series, 4kA/4kV 

With SVC 

All magnet coils in series. 
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New concept for energy management 
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2 power converters + 1 full spare 

IGBT converters with capacitive storage 3 * 2.6MJ 

Peak power 2 * 14MW   

Rms power 2 * 1.5MW 

 

 

quadrupole 
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New concept for energy management 
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Present power system:  

- Peak power applied to magnets: 14MW 

- Peak power taken on the grid:  14MW + SVC 17MVar 

 

New power system 

- Peak power applied to magnets:  28MW 

- Peak power taken on the grid:  5MW + no SVC 

- No increase of magnet losses! Same average power ! 
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Capacitor ageing of POPS 
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A capacitor unit is 2mF. 
68 basic elements (cans) are connected in parallel 

Polypropylene dielectric

Aluminium metalisation

9um thick

+

Floating 
electrode

-

Several hundreds meters of double 
film are rolled-up. 
The double film layer constitutes a 
series connection of 2 capacitors. 
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Capacitor ageing 
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Huge metallization 
evaporation 

Flash Over on surface 
between + and - 

Flash Over on surface 
between Floating electrode 
and a polarity 

1. Electric stress on surface: 4mm for 
5kV looks really tight (probably under 
dimensioned) 

2. Electric stress in the dielectric: 
E=250V/um is generally considered a 
limiting value for real applications in pp. 
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Capacitor ageing 
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The first hypothesis is unexpected ageing caused by low frequency charge-discharge 
cycling. 
 
‘film corrosion is due to partial discharged which demands on dv/dt. 
 
Capacitor manufacturers are under economical pressure, which leads to design without 
any margin. 
 
Put this margin in your specification.  
For example, specify 6kV capacitors for operation at 5kV. 

Floatings  

Converters 

Chargers 

Converters 
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Capacitor ageing 

CAS, Baden, 7-14 May 2014 
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CERN is building a test stand for accelerated testing of different capacitor technologies 
with a combination of DC+AC voltage. 
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Sensitivity to grid perturbations 
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CERN is affected by grid perturbations.  
The most sensible circuits are the warn magnets in LHC.  

Trigger beam dump 
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Sensitivity to grid perturbations 
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Classical topology but with special design to ovoid trip due to grid perturbations. 

AC
DC

DC
DC

Intermediary
DC-link

Extended
Delta

Transformer

AC
DC

DC
DC

Intermediary
DC-link

Extended
Delta

Transformer

Series or parallel 
connection with 

interleaving

Interleaving on 
AC side

Input 
stage 

Output 
stage 



EMC: Common mode voltage 
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At the start of POPS, all the performance were verified in differential mode. 

Everything was fine, but with the beam, the tune was disturbed. 
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EMC: Common mode voltage 
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Then, we looked at the common mode voltage (Between one polarity to ground). 
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EMC: Common mode voltage 
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Solution: Place EMC capacitor to earth via busbar 

 Use metal plate, no wire or cable 
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100Vpp 

Output filter 

Earth resistor 

Busbar to kill all stray inductances 

EMC capacitor 

Stray inductances

CM filter capacitor

Vearth  



EMC: Common mode voltage 
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Example of DC filtering with EMC capacitor 
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SCB Filter SCA Filter

SCB Inductor SCA Inductor

EMI Caps EMI Caps



Grounding 
Particles accelerators are very sensitive to EMC (conducted and radiated noise). 

 

Need a meshed earth !  
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http://indico.cern.ch/getFile.py/access?contribId=44&se

ssionId=9&resId=0&materialId=slides&confId=85851 
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Grounding 
Appling good EMC rules to power converters: 

 

Use metal plate to interconnect and not cable. 

 

Yellow-green cable only for  

Personnel safety  

Not for EMC 
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Solution for IGBT cycling 
The life time of the IGBT is limited in number of thermal cycles. 

 

IGBT manufacturers provide expected number of cycles depending of ΔTj 

 

 

 

 

 

 

 

 

 

 

Solutions:  

- reduce IGBT stress by interleaving technique (more cells in parallel) 

- Oversize IGBT to decrease the ΔTj:  

POPS example: 15 millions cycle / year  ΔTJ<25°C with press pack IGBT 
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Minimum duty cycle 
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The IGBT has a minimum pulse width and each IGBT leg needs dead time. 

This creates non linearity in the PWM control at low voltage. 

 

 



Minimum duty cycle 
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Thyristor have also a minimum turn ON time. 

The discontinuity of the current in the choke is also limiting the minimum current of the 
converter. 

 

 

 

 

 

 

 

  

 



To facilitate the control of the accelerator, an identical controller shall be placed in 
front of all the power converters. 

 

Example of SESAME with PSI controller 
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Solution for accelerator control 
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Imeasured 

Iref 

Need digital electronics to achieve high performance control 

V 

I 
B 

Vref 

eV 
G(s) 

eI + 
Reg. 

F(s) 
- 

DAC 

Power converter control 
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Need two DCCTs 
to be sure of the 
measurement!! 



Current measurement 
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Do you need to calibrate your measurement chain? 

 

What? 

When? 

How? 

 

Ask the specialists! 

 

 

Do you need a standard lab? 

 

Burden resistor 

Reference voltage 

Reference current source 

Reference DCCT 

 

 

 



LHC class 1 global accuracy 
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Converter category Accuracy Class 1 year stability 

Main Dipoles Class 1 50 

LHC specification  

50ppm/year 

 

LHC result 

< 10ppm/year with annual calibration 

 

Possible improvement 

< 2ppm/year with monthly calibration 
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Current regulation 
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The performance of the current regulation is critical for a machine.  
 
RST controller provides very powerful features. 
Dead-beat control is a must for operation! 
Anti-windup is needed to control the saturation of the loop. 
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Summary 
 

The magnet power converters are driving the beam. 

 

Their performance are very challenging for particles accelerators. 

 

Particles accelerators need all your 

creativity in many technical fields! 

 

Experience sharing helps us to make it right ! 

 

 

Many thanks to all speakers!! 
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CAS organisation 

Many thanks to  

 

 Roger Bailey  

         &  

  Barbara Strasser  

 

 

Many thanks to  

 

 Linny Rivkin  

         &  

  René Künzi 

 

 

Many thanks to all sponsors !!! 
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Next step 

POCPA: Power Converters for Particles 
accelerators 

 

This workshop is organized for power 
supply specialists from all labs every 
two years. 

 

50 people participated to the Last 
event in DESY.  

 

Join us! 
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https://indico.bnl.gov/conferenceDisplay.py?confId=687 

 

https://indico.bnl.gov/conferenceDisplay.py?confId=687
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