Stefano Frixione

Quark mass effects in $gg \rightarrow H$ with MC@NLO

CERN, 23/7/2013

$gg \rightarrow H$ in MC@NLO

Up to v4.07 only HEFT results available (Born can retain the exact m_t dependence)

From v4.08 (June 2012), the real and virtual matrix elements have been included that feature the exact m_t and m_b dependence

From v4.10 (July 2013), the possibility is given to follow the prescription of Grazzini and Sargsyan (1306.4581) whereby bottom-loop contributions are treated differently w.r.t top-loop ones

Note: aMC@NLO is capable of simulating many more Higgs processes than MC@NLO (see e.g. 1104.5613 $[t\bar{t}H/t\bar{t}A]$, 1304.7927 [VBF] or 1306.6464 $[X(J^p)]$)

The use of MC@NLO in this specific case is due to the fact that the relevant matrix elements are loopinduced (e.g., the virtuals are two-loop diagrams), and cannot be computed automatically

MC@NLO and HRes

They are quite similar: both use an additive matching approach

Resummation in HRes is performed through analytically-computed Sudakovs, in MC@NLO with parton showers

The analogue of HRes' Q_i in MC@NLO is the shower scale passed to the MC in the LH event file (to be dead sure that there are no sharp-thresold effects, we randomly choose the shower scale in a pre-defined range)

MC@NLO v4.10

IMODEHGG=0, HVQMASS#0, HGGBMASS#0 (same as up to v4.09):

$$\sigma = |\mathcal{A}_t|^2 + 2\Re \left(\mathcal{A}_t \mathcal{A}_b^*\right) + |\mathcal{A}_b|^2$$
$$Q_1 = Q_2 = \mathcal{O}(m_H)$$

IMODEHGG=0, HVQMASS#0, HGGBMASS=0:

$$\sigma = |\mathcal{A}_t|^2$$
$$Q_1 = \mathcal{O}(m_H)$$

IMODEHGG=1, HVQMASS#0, HGGBMASS#0:

$$\sigma = 2\Re \left(\mathcal{A}_t \mathcal{A}_b^* \right) + \left| \mathcal{A}_b \right|^2$$
$$Q_2 = \mathcal{O}(m_b)$$

Note: the two runs:

IMODEHGG=0, HVQMASS#0, HGGBMASS=0

IMODEHGG=1, HVQMASS#0, HGGBMASS#0

must both be performed, and the results summed (with their respective cross sections) — always trivial, and particularly so when running with WGTTYPE=1

The latter results are unphysical if taken without the former

Consistency check

Ratio of the result of v4.09 over that obtained by separating the top and bottom contributions, and showering both with the same shower scales as used in v4.09 \Longrightarrow such a separation works as expected

MC@NLO vs HRES

histograms: MC@NLO

symbols: HRes

solid and circles: $Q_2 = \mathcal{O}(m_b)$ dashed and boxes: $Q_2 = \mathcal{O}(m_H)$

- Not a tuned comparison with HRes (eg hard scales are different).
 Yet, good agreement except in the first bin
- ► While the statistics can be improved, the first bin in MCs is always going to be significantly driven by cutoff choices (a universal effect)
- ► The agreement (including resummation/shower scale (in)dependence) need not be surprising, given the similarities between the two formalisms
- Note, in particular, that the dependence on Q_2 is the same in the whole $m_b \longrightarrow m_H$ range

Shower scale dependence

black solid: $5 \le Q_2 \le 10$

blue dashed: $5 \le Q_2 \le 20$

red dotted: $4 \le Q_2 \le 7$

MC@NLO vs NLO

As usual, MC@NLO coincides in shape and normalization with the underlying fixed-order result in regions not dominated by the MC

- Note: the two-run structure can easily be changed, if there is a sufficient interest. The present solution was simply the quickest to implement starting from v4.09
- ► It is more laborious to port the two-loop matrix elements into aMC@NLO (for matching with Pythia). We will not do this unless strongly encouraged...
- In my opinion, it is not a bad idea to be conservative with theoretical systematics. This is a three-scale problem, and potentially-large logs remain unresummed. Is the $m_b \to 0$ limit smooth?