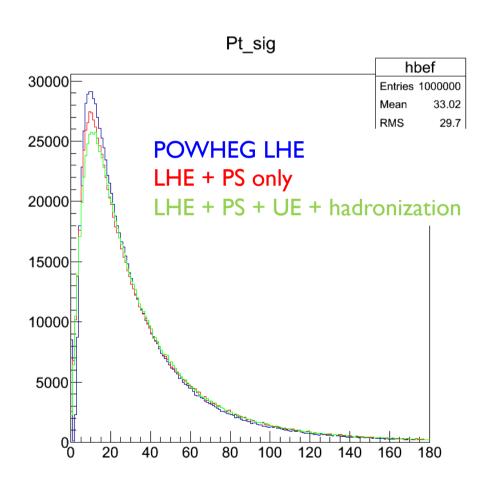


Treatment of $p_T(gg \rightarrow H)$ in CMS

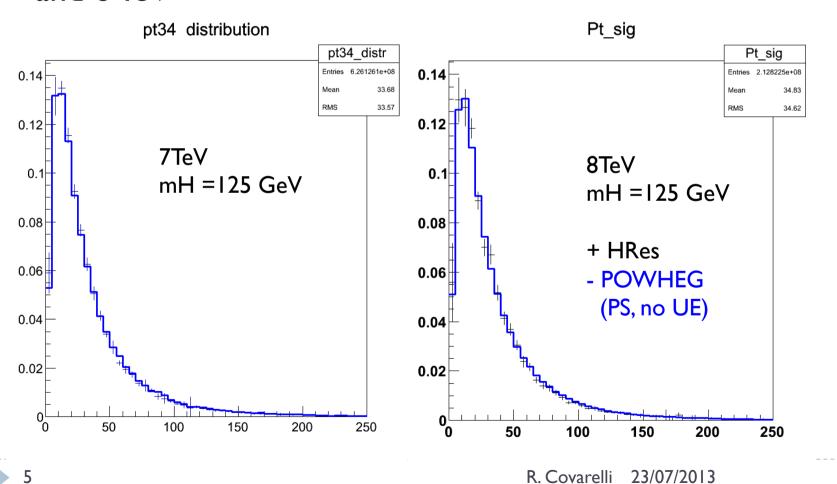
Roberto Covarelli - U. of Rochester

Use of p_T in the CMS Higgs analysis

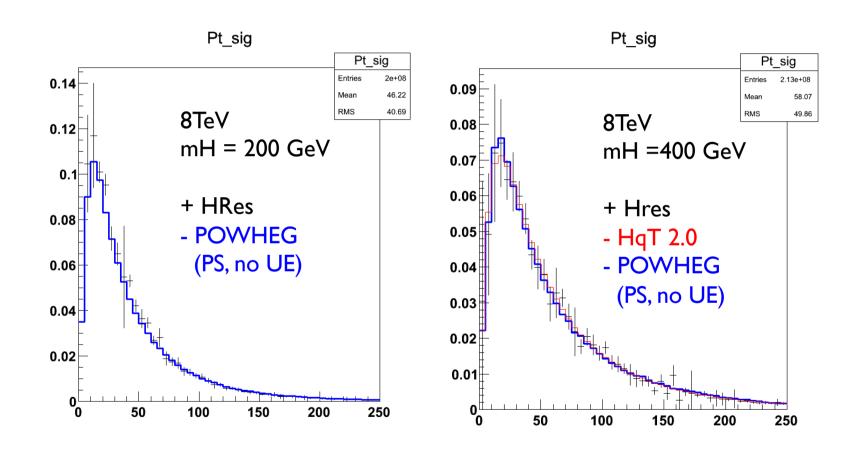

- Important use of p_T in only in the $H \rightarrow ZZ \rightarrow 4l$ channel analysis (search performed in $100 < m_{4l} < 1000$ GeV)
 - ▶ For events where there are less than 2 jets reconstructed, use to discriminate ggH from VBF and VH production
 - Improves uncertainty on μ (3-dimensional analysis)
 - Maybe use for a primordial differential cross-section measurement (but event yield very small)
- Other channels do not have enough events, or not clean enough, for accurate use of p_T
 - Use same theoretical description as ZZ for acceptance estimation (γγ) or use older MC and reweight (WW, $\tau\tau$)

MC choices for $gg \rightarrow H$

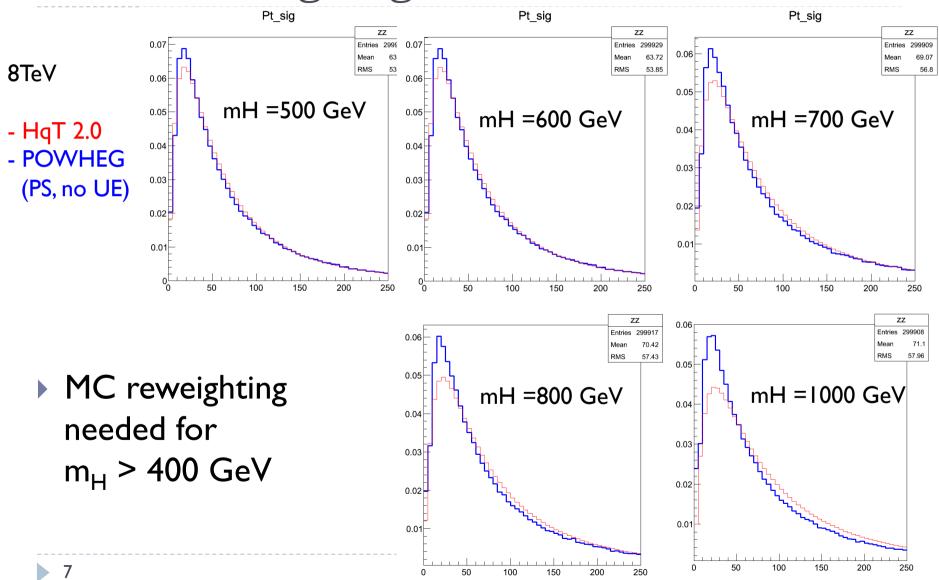
- Close-to-latest POWHEG (Feb 2013)
 - Including heavy-quark mass effects
 - ▶ Latest b and t masses (top mass from Moriond 2013 CDF update)
 - hfact tuning (hfact = $m_H/1.2$) to reproduce NNLO+NNLL spectrum
 - Use of propagator scheme (CPS) for mass lineshape, with EW corrections on
 - Mass window (range = m_H ± masswindow $\cdot \Gamma_H$) for sampling Higgs virtuality had to be tuned by hand to avoid errors in the program about hitting the high limit


Verifying NNLO+NNLL tuning

- Several spectra generated to verify correct reweighting, with:
 - ▶ HRes for m_H <= 400 GeV</p>
 - HqT 2.0 above (HRes not available)
- Following recommendations of YR2 comparison was done with NLO spectra:
 - with no HQ effects
 - after <u>parton-shower only</u> performed by PYTHIA

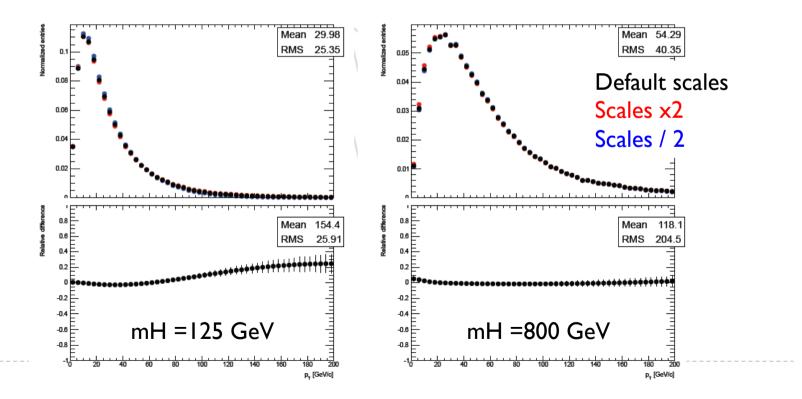


NNLO tuning: low mass


Agreement with HRes is excellent at low mass for both 7 and 8 TeV

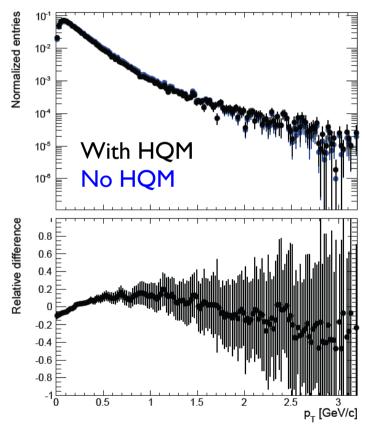
NNLO tuning: intermediate mass

NNLO tuning: high mass



Scale systematics

Easy to include


8

- Re-run HRes with halved and doubled QCD scales (Res, Ren, Fact) and evaluate effect on spectrum
- Up to 20% effect at low mass, almost negligible at high mass

Finite heavy quark masses - PDFs

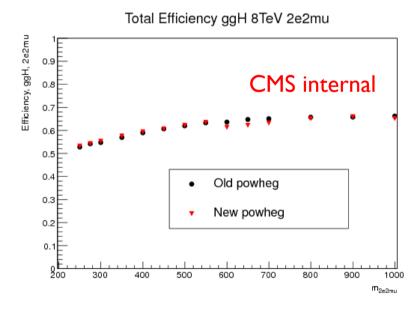
- Finite top (and bottom) mass effects as described by POWHEG
 - Quite large effect (up to 15%)
 - For the moment use b and t mass uncertainties to establish systematics ← 1-2%, too small?
 - Comparison with other generator?
 - Unfortunately no productions with MC@NLO done in CMS
 - Suggestions?
- Other PDF sets tested (CT10, MSTW2008, NNPDF2.1)
 - Effect also negligible compared to resummation

Mass window issue?

- ▶ Mass window (range = m_H ± masswindow $\cdot \Gamma_H$) for sampling Higgs virtuality \rightarrow set a default value of 10
- At high mass it had to be tuned by hand to avoid errors in the program about hitting the high limit
- Examples:

□ 500 GeV:
$$0.5 < m_H < 1180 \text{ GeV}$$

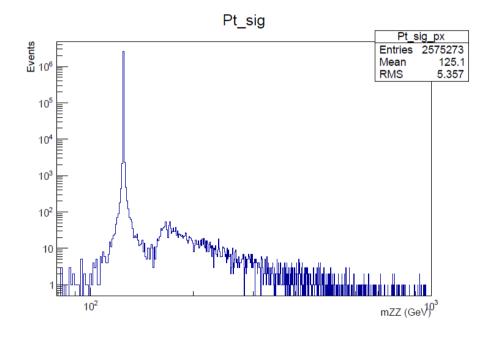
□ 550 GeV:
$$0.5 < m_H < 1480 \text{ GeV}$$


$$\Box$$
 600 GeV: 0.5 < m_H < 1707 GeV

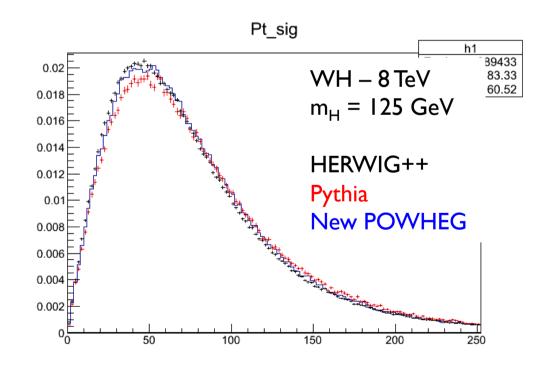
$$\Box$$
 650 GeV: 0.5 < m_H < 1756 GeV

$$\Box$$
 700 GeV: 0.5 < m_H < 1780 GeV

$$\square$$
 800 GeV: 0.5 < m_H < 1955 GeV


□ ...

 Caused strange "drop" in detector acceptance (had to be smoothed), not well understood


Mass window issue?

- ► Mass window (range = m_H ± masswindow $\cdot \Gamma_H$) for sampling Higgs virtuality \rightarrow set a default value of 10
- At low mass always kept this value → are we losing a fraction of the cross-section?
- Tested very large mass window:
 - □ For mH = 125 GeV, 99.83% of the cross-section in the peak
 - According to Kauer-Passarino the effect could be larger when considering the ZZ final state...

On VBF and VH p_T

- For VBF use POWHEG p_⊤ spectrum
 - Vary PDFs and scales
- VH was not available in POWHEG until recently
 - For the moment use
 Pythia or ThePEG/
 HERWIG++ and use the difference in spectrum as systematics
 - Plan to move to same treatment as VBF (vary PDFs and scales) → no big change expected

Conclusions

- ▶ Most sophisticated studies on p_T in CMS come from $ZZ \rightarrow 4I$ Higgs analysis
 - Used to discriminate ggH,VBF/VH and background in a large m_{ZZ} search range (100-1000 GeV)
- Use POWHEG to describe signal spectrum
 - NNLO tuning works up to mH ~ 400 GeV, reweighting needed for larger masses
 - ► Finite HQ masses used ← uncertainty derived from HQ mass uncertainties, too optimistic?
 - Using complex-pole scheme with EW corrections, strange efficiency drop at 600 GeV not very well understood
 - Effect of Higgs virtuality ranges (only thing set by hand)?