M19

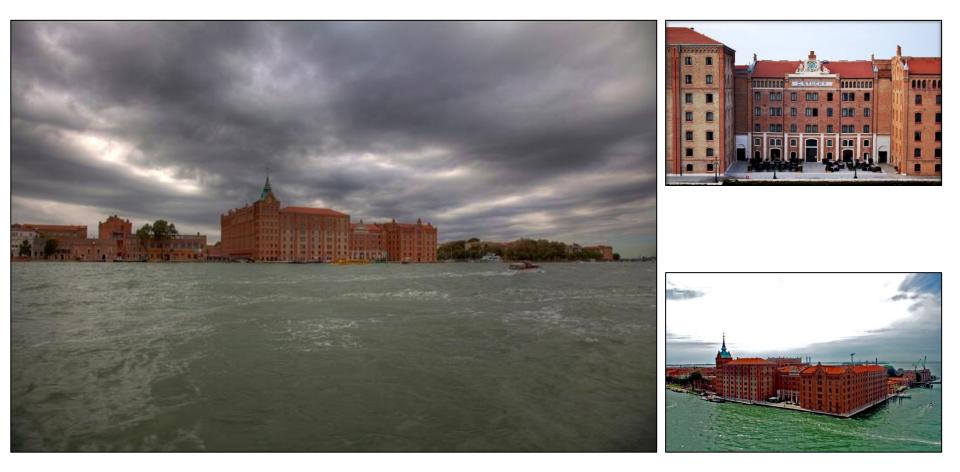
A new school complex module in an historical building based on Leed Certification and Geothermal application (Trieste port)

Authors: Arch. Andrea Manganaro (STEAM Srl - speaker) Eng. Giuseppe Romano (STEAM Srl) Prof. Eng. Mauro Strada (STEAM Srl)

WHY M19 DESIGN?

At the end of June the Trieste Province submitted an expression of interest for Warehouse 19 in the Concession procedure for areas in Porto Vecchio made by Port Authority.

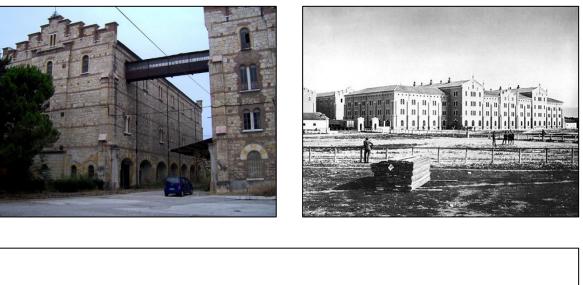
INPUTS FROM TRIESTE PROVINCE


- Move the Naval College (600 students) in Warehouse 19;
 - Create a modular settlement internal layout suitable for 650 students for a future Educational Pole in the port area
- Reduce the management and energy costs with special attention to environment.

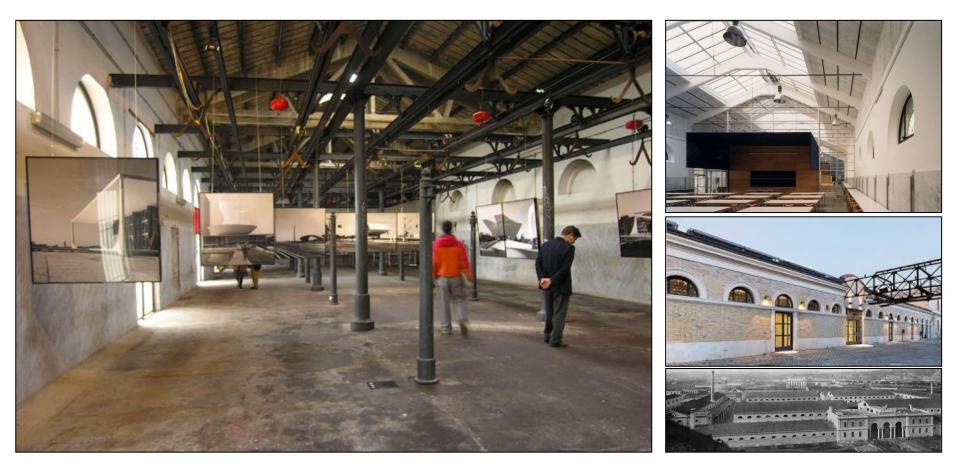
OTHER INPUTS TO BE CONSIDERED

Create a guideline for industrial areas no longer in use, in terms of authorization procedures and controlled level of performances expected;

Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj – August 25th- 27th, 2014

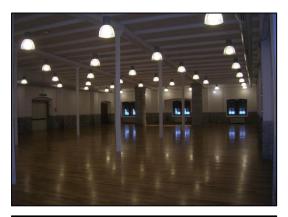

EXAMPLES OF REFURBISHED OLD INDUSTRIAL AREAS AND BUILDINGS MOLINO STUCKY VENICE

EXAMPLES OF REFURBISHED OLD INDUSTRIAL AREAS AND BUILDINGS SANTA MARTA VERONA



EXAMPLES OF REFURBISHED OLD INDUSTRIAL AREAS AND BUILDINGS OLD SLAUGHTERHOUSE COMPLEX ROME

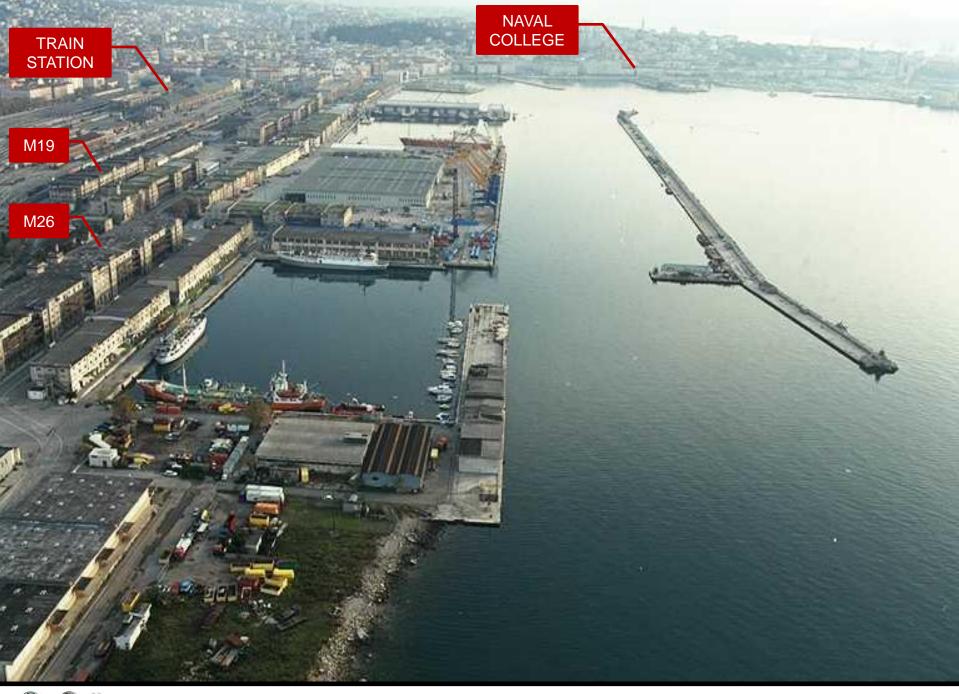
BUILDING ALREADY REFURBISHED IN THE AREA OF PORTO VECCHIO

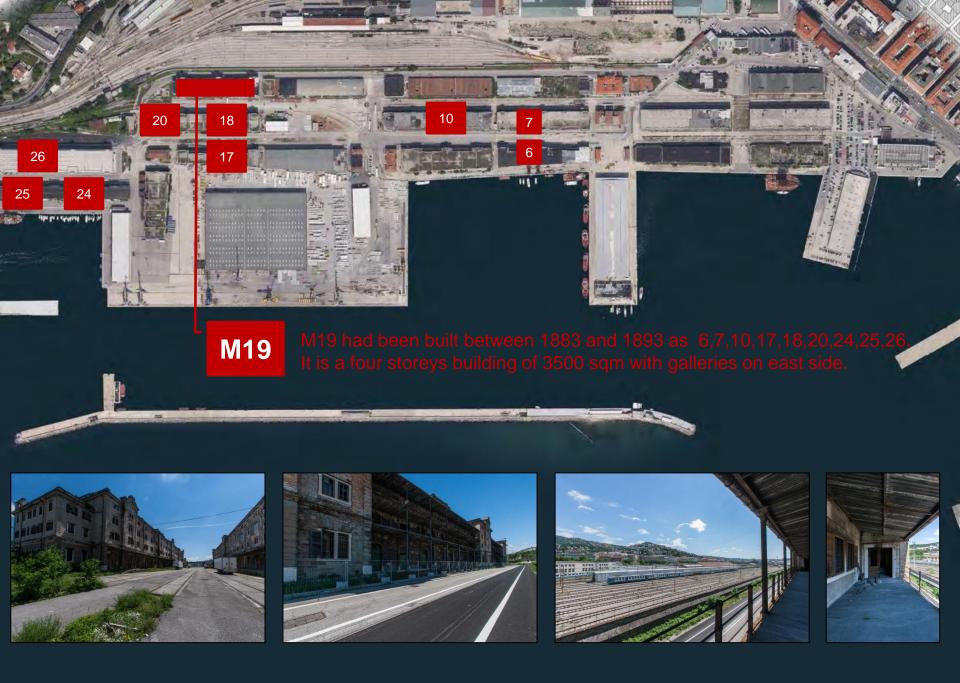


WAREHOUSE 26

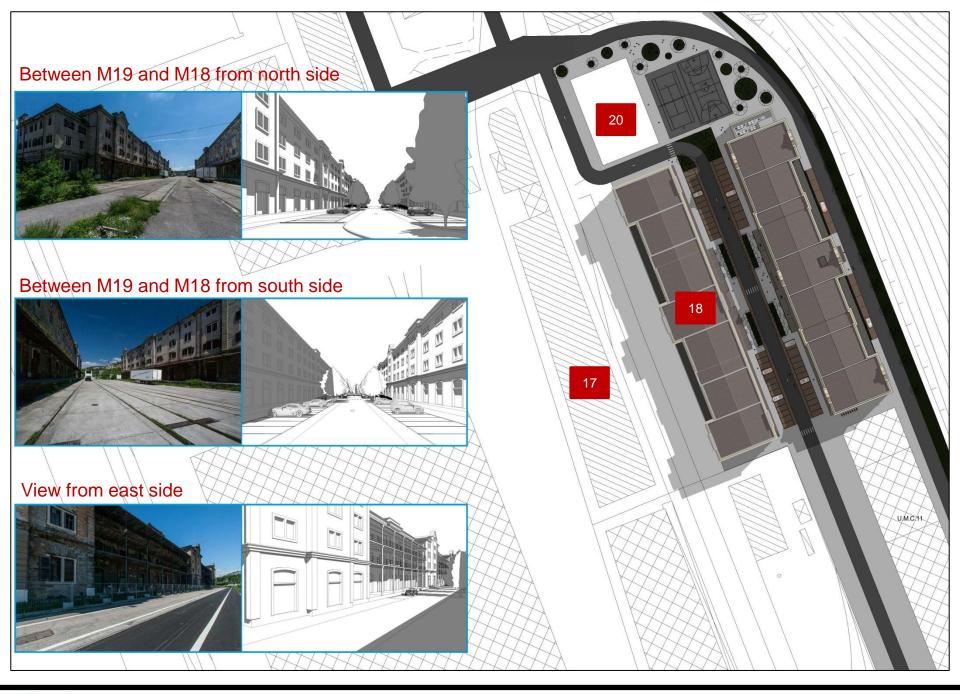
WATER POWER PLANT

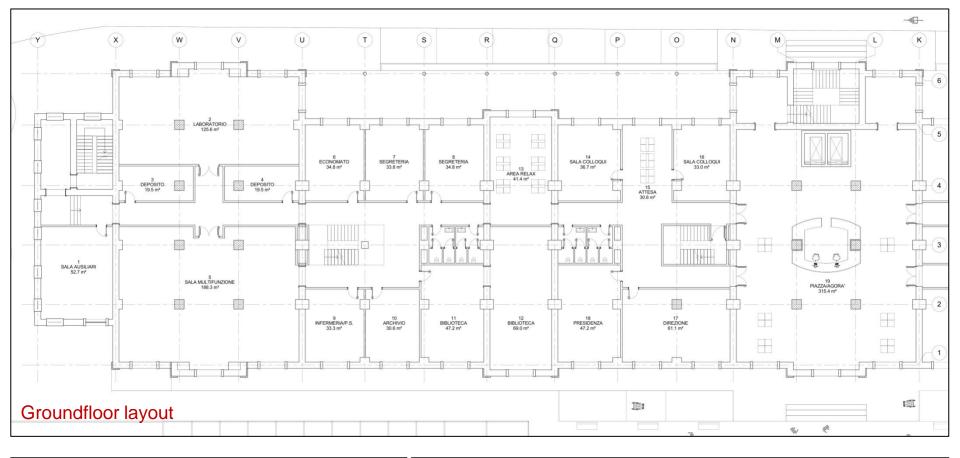
ELECTRICAL SUBSTATION

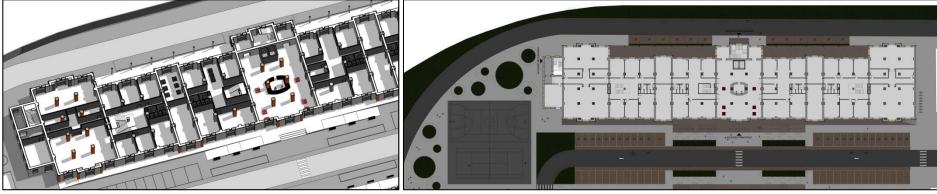




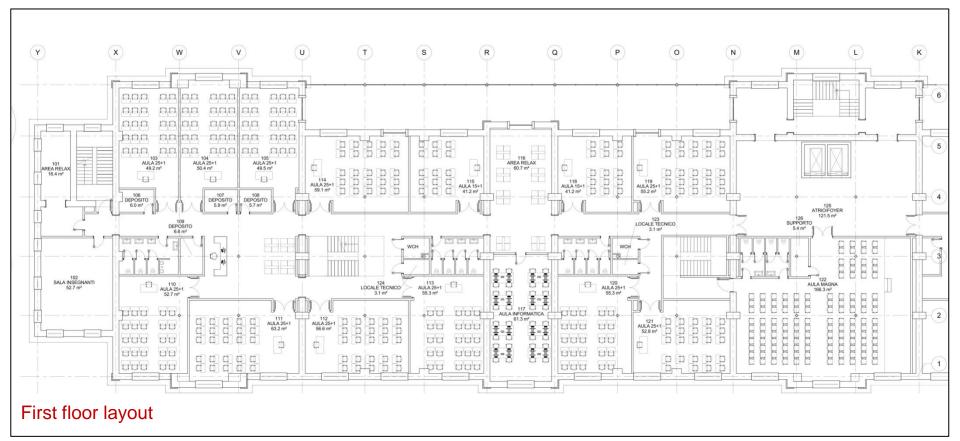
Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj – August 25th- 27th, 2014


Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj – August 25th- 27th, 2014


Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj - August 25th- 27th, 2014

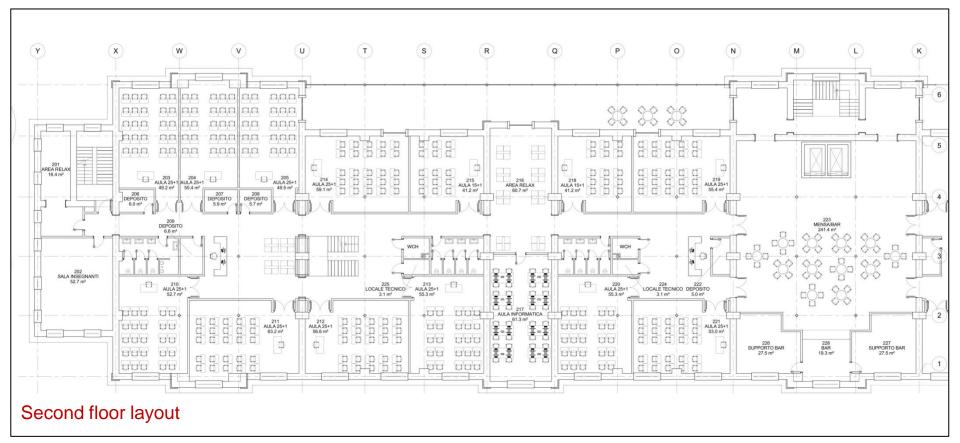


Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj - August 25th- 27th, 2014



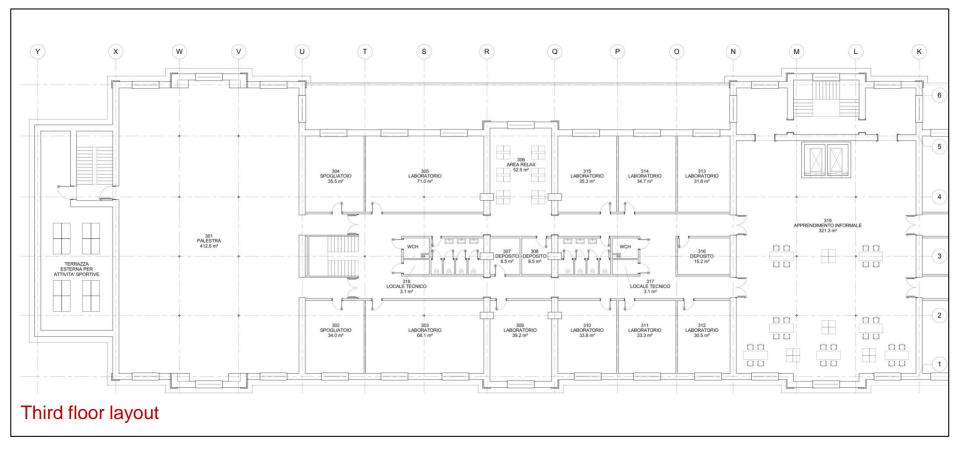
Groundfloor - 3D section

Siteplan




Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj – August 25th- 27th, 2014

Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj - August 25th- 27th, 2014

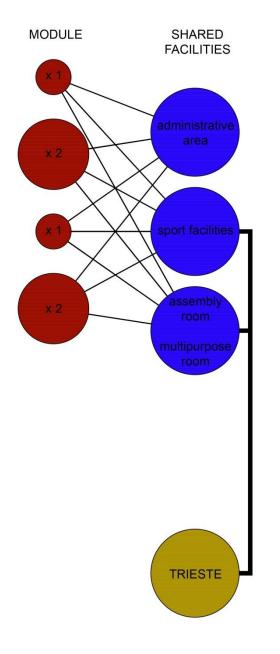


Second floor - 3D section

Classroom

STEAM

Workshop on Geothermal Energy Status and future in the Peri-Adriatic Area - Velj Losinj - August 25th- 27th, 2014



Third floor - 3D section

External view

Hall

MODULAR AND FLEXIBLE INTERNAL LAYOUT

Based on the last Government Guide 2013 about Educational Buildings

- Groundfloor with support facilities (Administrative rooms, Library, Multipurpose rooms or laboratories with heavy equipments if necessary);
- **First and Second floor** with 13 classrooms each with relax areas, IT rooms, teachers areas, cafè and assembly hall
- **Third floor** with shared facilities (Laboratories, Gym, etc..).

MANAGEMENT COST REDUCTION

- The proposed layout is adaptable to schools with different size and different needs, as well as in different Warehouses of Port area in order to create the expected Pole of Schools;
- The proposed design, especially in case of the future Pole, could significantly reduce the management cost related to internal organization, sharing the facilities (internal and external) between school modules and with the city of Trieste (in overtime use).

DESIGN APPROACH BASED ON:

- Maximum comfort and safety to occupants
- Flexible spaces suitable for future changing
- Reliability of systems
- Reducing of maintenance
- Reduction in energy consumption
- Reducing of environmental impact

SUSTAINABLE DESIGN INTEGRATED DESIGN

DESIGN TOOLS

- Complete design team: architects, HVAC and electrical designer, operation & maintenance expert
- Life Cycle Analisys
- Commissioning

LEED CERTIFICATION

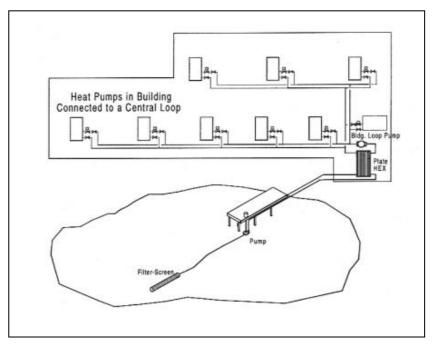
WAREHOUSE 19

LEED – GBC HISTORIC BULDING

Project checklist:

- Historical Value
- Sustainables Sites
- Water Efficiency
- Energy & Atmosphere
- Materials & Resources
- Indoor Environmental Quality
- Innovation & Design Process

GBC HISTORIC BUILDING[™] - SCHEDA PUNTEGGIO Per restaurare e riqualificare edifici storici

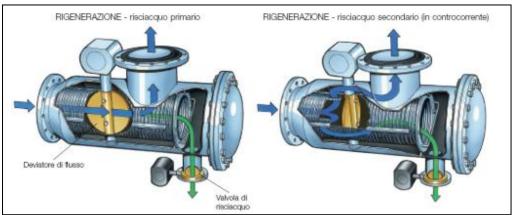

l	?	NO	Valenza	Storica Punteggio massir	10: 20	SI	?	NO	Materia	li e Risorse Punteggio massimo	e:
l			Prereq. 1	Indagini conoscitive preliminari	Obbligatorio	SI			Prereq. 1	Raccolta e stoccaggio dei materiali riciclabili	0
ļ			Credito 1.1	Indagini conoscitive avanzate: indagini energetiche	1-3	SI			Prereq. 2	Gestione dei rifluti da demolizione e costruzione	0
				Indigina di Livello	1	SI			Prereq. 3	Riutilizzo degli edifici	0
				Indagini di approfondimento: termografia	1				Credito 1	Riutilizzo degli edifici: mantenimento degli elementi tecnici e delle finiture esistenti	
				Indegini di approfondimento: valatazione conduttanza termica in opera	1				Credito 2	Gestione dei rifiuti da demolizione e costruzione	
			Credito 1.2	Indagini conoscitive averzate: indagini diagnostiche su materiali e forme di degrado	2					Poduzione del 75%	
			Credito 1.3	Indagini conoscitive avanzate: indagini diagnostiche sulle	1-3					Riduzione del 95%	
				strutture e monitoraggio strutturale Indegini degessitote sulle strutture	1.2				Credito 3	Riutilizzo dei materiali	
				Monitoraggio strutturale	1	_				Material cubilizzati per il 15%	
			Credito 2	Reversibilità dell'intervento conservativo	1-2 1					Maturial cutilizzati per il 20%	
			Credito 3.1	Compatibilità della destinazione d'uso e benefici insediativi					Credito 4	Ottimizzazione ambientale dei prodotti	
			Credito 3.2	Compatibilità chimico-fisica delle malte per il restauro	1-2					Certificazioni di terze parte e impatti ambientali	
			Credito 3.3	Compatibilità strutturale rispetto alla struttura esistente	2					Certificazione multicriterio	
			Credito 4	Cantiere di restauro sostenibile	1 2				Credito 5	Materiali estratti, lavorati e prodotti a distanza limitata	
			Credito 5	Piano di manutenzione programmata	2	SI	2	NO	Qualità	ambientale Interna Purtragio musimi	
			Credito 6	Specialista in beni architettonici e del paesaggio	1	- 31	. '	NO	quanta	ampientale interna Palogo interna	
						SI			Prereq. 1	Prestazioni minime per la qualità dell'aria (IAQ)	0
	?	NO	Sostenil	pilità del Sito Punteggio massin	10: 13	SI		_	Prereq. 2	Controllo ambientale del fumo di tabacco	0
			Prerez, 1	Prevenzione dell'inquinamento da attività di cantiere	Obbligatorio				Credito 1	Monitoraggio dell'aria ambiente	
			Credito 1	Recupero e riqualificazione dei siti degradati	2				Credito 2	Valutazione della portata minima di aria esterna	
			Credito 2.1	Trasporti alternativi: accesso ai trasporti pubblici	1 🖠				Credito 3.1	Plano di gestione della qualità dell'aria indoor: fase di cantiere	
			Credito 2.2	Trasporti alternativi: portabiciclette e spogliatoi	1 🕈				Credito 3.2	Plano di gestione della qualità dell'aria indoor: prima dell'occupazione	
			Credito 2.3	Trasporti alternativi: veicoli a bassa emissione e a carburar alternativo	¹⁰⁰ 1 🖠				Credito 4.1	Materiali basso emissivi: adesivi e sigillanti, materiali cementizi e finiture per il legno	
			Credito 2.4	Trasporti alternativi: capacità dell'area di parcheggio	1 2				Credito 4.2	Materiali basso emissivi: vernici e rivestimenti	
			Credito 3	Sviluppo del sito: recupero degli spazi aperti	2 🖠				Credito 4.3	Materiali basso emissivi: pavimentazioni	
			Credito 4	Acque meteoriche: controllo della quantità e della qualità	2				Credito 4.4	Materiali basso emissivi: prodotti in legno composito e fibre vegetali	
			Credito 5	Effetto isola di calore: superfici esterne e coperture	2 🕈				Credito 5	Controllo delle fonti chimiche e inquinanti indoor	
			Credito 6	Riduzione inquinamento luminoso	1				Credito 6.1	Controllo e gestione degli impianti: illuminazione	
1	?	NO	Gestion	te delle Acque Punteggio massir	10: 8				Credito 6.2	Controllo e gestione degli impianti: comfort termico	
									Credito 7.1	Comfort termico: progettazione	
		_	Prereq, 1	Riduzione dell'uso di acqua	Obbligatorio				Credito 7.2	Comfort termico: verifica	
			Credito 1	Riduzione dell'uso dell'acqua per usi esterni	1-3						
				Rduzione dei consumi dei 50% per scopi inigoi oppore omamentali	1	SI	7	NO	Innovas	cione nella Progettazione Punteggio massimi	e:
				Poluzione dei consumi dei 50% per scopi inigai e omenentali	2				Credito 1.1	Innovazione nella Progettazione: titolo specifico	
				Nezaun atilizzo di acqua potabile per usi esterni e/o ornament					Credito 1.2	Innovazione nella Progettazione: titolo specifico	
			Credito 2	Riduzione dell'uso dell'acqua	1.3				Credito 1.3	Innovazione nella Progettazione: titolo specifico	
			Credito 3	Contabilitzzazione dell'acqua consumata	1 - 2 🕈				Credito 1.4	Innovazione nella Progettazione: titolo specifico	
				Interventi con presenza di più unită funzionali	1				Credito 1.5	Innovazione nella Progettazione: titolo specifico	
				Installezione di contatori per la misore dell'acqua	1				Credito 2	Professionista Accreditato GBC	
	?	NO	Energia	e Atmosfera Punteggio massir	10: 29	SI	?	NO	Priorità	Regionale Punteggio massim	e:
			Prereq. 1	Commissioning di base dei sisterni energetici	Obbligatorio				Credito 1.1	Priorità Regionale: credito specifico	
			Prereq. 2	Prestazioni energetiche minime	Obbligatorio				Credito 1.2	Priorità Regionale: credito specifico	
			Prereq, 3	Gestione di base dei fluidi refrigeranti	Obbligatorio				Credito 1.3	Priorità Regionale: credito specifico	
			Credito 1	Ottimizzzzione delle prestazioni energetiche	1 - 17 🕇				Credito 1.4	Priorità Regionale: credito specifico	
				Procedura semplificata per la determinazione della prestazion anergetica dell'odficio	e 1-3				Tetel		
				Simulazione energatica in regime dicernico dell'intero adificio	1 - 17				Totale	Punteggio massimi	81
			Credito 2	Energie rinnovabili	1-6 🖠						
			Credito 3	Commissioning avanzato dei sistemi energetici	2 🕄					ding™ - Edizione 2014	
			Credito 4	Gestione avanzata dei fluidi refrigeranti	1					ti possibili per Innovazione nella Progettazione e Prior	ità F
									19 punti	Argento 50 - 59 punti 🖉 🕬 👘	

SEA WATER HEAT PUMP

- Geothermal open loop system
- Sea water temperature optimal: about 10°C in the winter and never exceeds 25°C in the summer

STEAM

Advantages:


- Free cooling
- High COP of heat pump
 - Environmental savings

SEA WATER HEAT PUMP

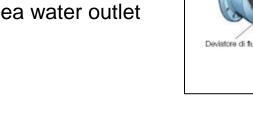
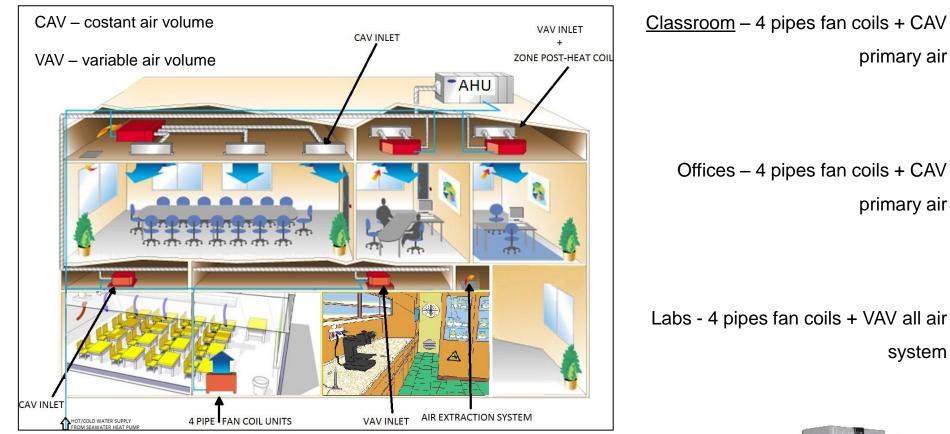

...but there are also some technical details that have to be studied:

 Plate heat exchanger material titanium


- Corrosion
- Sea water inlet tank
- Thermal control of sea water outlet
- Filtration equipment

HVAC SYSTEMS

Geothermal energy application requires low to medium temperature heat distribution system and encourages investments in building envelope efficiency, and installation of low temperature HVAC terminal unit (radiant floor, duct coils, fan coils, domestic how water heating).

primary air

primary air

system

M19

A new school complex module in an historical building based on Leed Certification and Geothermal application (Trieste port)

Authors: Arch. Andrea Manganaro (STEAM Srl - speaker) Eng. Giuseppe Romano (STEAM Srl) Prof. Eng. Mauro Strada (STEAM Srl)