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Physics of gases 
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Units and conversions 

Flow or 
Throughput 

To  
From 

Pa m3/s mbar l/s torr l/s 

Pa m3/s 1 10 7.5 

mbar l/s 0.1 1 0.75 

torr l/s 0.133 1.33 1 

To  
From 

l /s  cm3/s m3/h 

l /s 1 1000 3.60 

cm3/s 0.001 1 0.0036 

m3/h 0.278 278 1 

Pumping speed 
Volumetric flow 

Conductance 
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To  
From 

Pa  mbar torr 

Pa 1 0.01 7.5/1000 

mbar 100 1 0.75 

torr 133 1.33 1 

Pressure 

]2unit []1unit [  factorxx

[Volume/time] 

[Pressure 
×Volume/time] 



The physics of Gases 
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p = pressure 
V = volume 
nm = amount of gas (number of moles) 
T = temperature 
R = general gas constant  [8,314 J/(mol K)] 

The ideal gas law 

RTnpV m

An ideal gas is composed of 
randomly-moving, non-interacting 
point particles. 

1 dozen = 12 units 

6.022x1023 units  

TnkpV B n = amount of gas (number of atoms or molecules) 
kB = Boltzmann constant = R/6.022x1023 

1 mole = 



The physics of Gases 

Useful forms of the ideal gas law 
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2

2

1

1

T

p

T

p


In a closed volume, increasing 
temperature from T1 to T2 , pressure 
increases proportionally from p1 to p2  

2211 VpVp 

At constant temperature, the same 
number of molecules distribute in 2 
volumes V1 and V2 at pressures p1 
and p2 such that: 

V1 
V2 



Gas Mixtures and Partial Pressures 
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Dalton law 
The total pressure exerted by a mixture of (non-reactive) gases is equal to the sum of 
the partial pressures of individual gases 

 321 pppp

DEFINITION 
Partial pressure is the pressure which a gas  would exert if it 
occupied the volume of the mixture on its own 
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Flow regimes 
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l 

molecular chaos trajectory of a molecule 

Mean free path l and density 

Vacuum range 
Pressure 
 [mbar] 

n 
[molecules/cm3] 

Mean free path 

Ambient pressure 1013 2.5 × 1019 68 nm 

Low vacuum 300 – 1 1019 – 1016 0.1 – 100 μm 

Medium vacuum 1 – 10−3 1016 – 1013 0.1 – 100 mm 

High vacuum 10−3 – 10−7 1013 – 109 10 cm – 1 km 

Ultra high vacuum 10−7 – 10−12 109 – 104 1 km – 105 km 

Extremely high vacuum <10-12 <104 >105 km 

The average distance traveled by a molecule between collisions with other molecules 
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At 296K=23C 
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Mean Free Path l 

2

mold 

In the hard 
sphere 

molecules 
approximation 

(d = diameter) 

kT

p
n Ideal gas 

law 

Gas l p Gas l p 

H2 12x10-3 CO2 4 x10-3 

N2 6.4x10-3 Ar 7x10-3 

He 19x10-3 Ne 14x10-3 

CO 7x10-3 Kr 5x10-3 

mean free path × pressure, room 
temperature, in [m×Pa] = [cm×mbar] 
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The average distance traveled by a molecule between collisions with other molecules 

 

l 
1

2n
n = density of molecules 
σ = collisional cross section  

m10310nm31.0 9-

mol .d 

For N2: 

2
2 mold

kT
p


l 

l  inversely 
proportional to p 



D

l

The flow dynamics is characterized by the comparison of the mean free path l to the 
dimension D of the vacuum vessel. 

Knudsen number 

Kn
D


l Free Molecular Flow l >D 

Transitional (or intermediate) flow D/100< l< D 

Viscous (continuum) flow l< D/100 

Applying the previous slide, we have a useful relation between pressure and dimension 
of the vessel to distinguish flow regimes: 

Molecular flow: pD<0.064  [mbar . mm] 
Viscous flow: pD>6.4   [mbar . mm] 

Mean free path and flow regime 
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Room temperature, for N2 

l 

molecular chaos trajectory of a molecule 

Kn >1 

0.01< Kn< 1 

Kn< 0.01 

trajectory in a rarefied 
gas, l>D 

Collisions with wall (much) more 
frequent than with molecules 

Collisions with molecules dominate 



Definitions 
Throughput 

Pumping speed 
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dt

pVd
Q

)(


Gas Flow: throughput … French: débit 

When flow doesn’t change with time (we say steady 
state), Q has the same value at every position along the 
pipework:  mass is conserved. 

outin QQ 

12 

Throughput=gas flow rate 
Quantity of gas d(pV) crossing a plane along a duct in unit time dt. 

TNkpV B

From the ideal gas law written per unit time, we see that this is a energy flow rate. 

RT
dt

dN
Tk

dt

dN

dt

pVd
Q mol

B 
)( Pam3s-1= Nms-1 = Js-1= W 

particle 
flow rate 

The same flow subsists in different locations of a 
continuous unbranched isothermal pipework 

packet of 
energy count money=count dwarfs 

This is equivalent to a particle flow rate only at constant temperature. 



…and pumping speed 

We usually call V the volumetric flow rate (débit volumétrique) 

in particular, at the entrance of a pump, we call it pumping speed, S.  
Substituting this in the definition of throughput, we obtain: 

SpQ 
“The quantity of gas flowing is the 
product of pressure and the 
volumetric flow rate at that pressure” 

Pumping speed is usually 
depending on pressure, so 

S=S(p) 
 

Pumping speed is different 
for different gas species 
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The pumpdown process 
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The pumping process 

V 

p QL 

QG 

Qv 
S S* 

S*  pumping speed of the pump 
S  pumping speed at the vessel, of volume V 
p  pressure in the vessel 
Qtot = sum of all gas loads entering the vessel: 
outgassing, leaks and permeation, process gas… 

etc pLGTot QQQQ

BASIC EQUATION OF PUMPING – or the Continuity Equation 
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Qp 

pump 

vessel 

dpV  Change of amount of free gas in the volume V 

dtpS  Gas pumped away in a time dt at pressure p 
and speed S 

dtpSdtQdpV Tot  Amount of gas getting into the free volume 
in a time dt at pressure p and speed S 

dtQtot 

QTotdt Spdt 
V.dp 



The pumping process 

V 

p QL 

QG 

Qv 
S S* 

S*  pumping speed of the pump 
S  pumping speed at the vessel, of volume V 
p  pressure in the vessel 
Qtot = sum of all gas loads entering the vessel: 
outgassing, leaks and permeation, process gas… 

etc pLGTot QQQQ

dtpSdtQdpV Tot 
The difference between the quantity of gas entering the 
volume and the one leaving it in a small interval of time dt 
is equal to the net change in the quantity of gas in the 
volume V,  d(pV)=V·dp 

BASIC EQUATION OF PUMPING – or the Continuity Equation 

For conserved quantities:  
«Everything which enters a volume minus 
everything which leaves it, equals the net 
increase in the quantity in the volume» 

NB: T=constant, i.e. isothermal conditions, or pV is not the conserved quantity 

QTotdt Spdt 
V.dp 
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The continuity equation 

Usually, the quantity of gas in a pumped volume decreases with time, so we can turn 
the equation to better express  this reduction: 

dtpSdtQdpV Tot 

TotQpS
dt

dp
V 










The rate of change of the amount of gas 
in a chamber is the difference between 
the rate of its removal and the influx rate. 

What does dp mean? Or dt? 
dp is the change in pressure, not the absolute, measured pressure.  
dt is a small time interval in which the change occurs. 

Notice that it is not always easy to apply the continuity equation to know how pressure 
reduces with time: 
QTot is time dependent, and also depends on the previous history of the system. S is 
dependent on pressure and also on gas species…  
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After 3h pumping, pressure is presently 5.10-7mbar. The pumping speed of the 
turbomolecular pump, including reduction by the conductance connecting it to the 
vessel, is 10ls-1.  
The vessel is a tube, 1m long and 400mm in diameter. Chronometer in the hand, you 
notice that 40s later pressure has decreased to 4.10-7mbar.  
What is the rate of change of pressure in this moment?  
In absence of leaks, can you evaluate the total outgassing rate of the vacuum chamber in 
this moment? 
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Example: continuity equation 

p=5·10-7 mbar   

dt =40s, dp =1·10-7 mbar dp/dt=2.5·10-9mbar/s 

Seff =10 l/s 

d =400mm, L=1000mm 

liters7.125
2

2









 L

d
V 

dt

dp
VpSQQ outgtot 

Qoutg=(5·10-6 +3·10-7 ) mbar ·l·s-1 = 5.3 ·10-7 mbar ·l·s-1  
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t
V

S
ptp

dt
V

S

p

dp

dt
V

S

p

dp

dtS
p

dpV

oinitial 










ln)(ln

Pumpdown: initial phase 

Initially, the pumpdown process is dominated by evacuation of the free gas in the volume. 
Let’s write Qtot=0 and let’s call pinitial(t) the pressure decrease curve in the initial phase of 
pumpdown. 
 
Gas quantity present in the volume (p V) decreases while gas is evacuated by the pump.  
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Sp
dt

dp
V 

Volume 
depletion t

V

S
pp oinitial  lnln

t

o

t
V

S

oinitial epepp 




pSQ
dt

dp
V Tot 







 Qpumped 
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time 

103 

102 

101 

1 2 4 5 6 7 

Remember maths! A function which 
changes with a rate proportional to the 
function itself is an exponential… S

V
 Characteristic time or time constant 

po 

ln p versus t 



Initial pumpdown time 

















 t

V

S
pp exp0

To make time appear alone, let’s rearrange by taking 
the natural logarithm on both sides: 









p

p

S

V
t 0ln We obtain the time to lower the pressure from the 

initial value p0 to some value p 

1000 

100 

10 

1 

0.1 

0.01 

t 

p 

Example:  
A 50l volume is pumped down with   
S=1 l.s-1, starting from 1000mbar to 1mbar. 
What is the value of the time constant ? 
How much time does it take per decade pressure lost? 
How much time in total? 

3.2)10ln( 

)10ln(2)100ln()/ln( ppo

=V/S=50s 
Time per decade=.ln(10)=115s 
Total time=3.115s=345s 

)ln()ln( axa x 

2.3 
20 

What 
happens 
here? 



t
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S

oinitial epp




Pumpdown: effect of outgassing on p(t) 

Below 1 Pa=10-2mbar, (~roughing), the curve p(t) starts to deviate from the “free 
volume” straight line. We cannot neglect outgassing Qout anymore. 
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pSQ
dt

dp
V tot 

n  ~1  for metallic unbaked surfaces 
 ~0.5  for elastomers, (for baked metallic surfaces) 

n

n

ultimate
t

k
ktp  

with 0.5 n 1.2  

ln p versus t 

tnkpultimate lnln 

Volume 
depletion t
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S
pp oinitial  lnln

3 

P
re

ss
u

re
 

time 

10-2 

10-3 

10-4 

1 2 4 5 6 7 



Pumpdown: effect of outgassing on p(t) 
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pSQ
dt

dp
V tot 

Volume 
depletion t

V

S
pp oinitial  lnln

n

n

ultimate
t

k
ktp  

t
V

S

oinitial epp




n  ~1  for metallic unbaked surfaces 
 ~0.5  for elastomers 

with 0.5 n 1.2  
P
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time 

10-2 

10-3 

10-4 

1 10 100 1000 

ln(p) versus ln(t) 

tnkpultimate lnln 

Below 1 Pa=10-2mbar, (~roughing), the curve p(t) starts to deviate from the “free 
volume” straight line. We cannot neglect outgassing Qout anymore. 



Pumpdown: effect of outgassing on p(t) 
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pSQ
dt

dp
V tot 

Volume 
depletion t

V

S
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n
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t

k
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t
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S
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
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n  ~1  for metallic unbaked surfaces 
 ~0.5  for elastomers 

with 0.5 n 1.2  
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ln p versus t 

tnkpultimate lnln 

Eventually, the pressure flattens down 
and becomes “constant” on the time 
scale of observation. On a long time 
scale, it continues to decrease slowly. 

Below 1 Pa=10-2mbar, (~roughing), the curve p(t) starts to deviate from the “free 
volume” straight line. We cannot neglect outgassing Qout anymore. 



For unbaked metals of standard rugosity,  

Pumpdown: when outgassing dominates 

outQSp
dt

dp
V 










S

Q
p out

ultimate 

We write pultimate because this pressure won’t 
decrease on the time scale of observation (ex. 1h)  

Actually, it decreases, because Qout decreases, but this process is much slower. 
The walls of the vessel get progressively emptied from their initial gas contents and gas 
release to the free volume decreases. 

When pressure ceases to fall and becomes constant on the 
time scale of observation, dp/dt=0. 
The equation becomes: 

p 

t 
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Example: pumpdown with outgassing 

From the pressure and applied pumping speed, you 
can evaluate the outgassing rate and see if it is 
conform to expectation 

S

Q
p out

t
AQout




Example:  
A stainless steel vacuum vessel of 1m length and 250mm diameter is evacuated by one 
pumping group of an effective pumping speed 50l/s. After 5h pumping, pressure has 
stabilized at ~1·10-6mbar. 
Do you consider that everything is running fine? 
 
p·S=5·10-7mbar·l/s 
 
A=7850 cm2 

t=5hr=18,000s =3·10-9mbar·l/cm2 
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Conductance 
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Conductance 

pU pD 

Q 

C 

)( DU ppCQ 

This equation relates throughput (fr. débit) to the 
difference between upstream and downstream 
pressure. 
It is the DEFINITION of conductance. 

The quantity of gas which is flowing 
across a given pressure difference 
depends on the ease of flow , 
described by CONDUCTANCE.   
Its reciprocal 1/C is a resistance to 
flow; i.e., the opposition the system 
exerts to gas flow. 

Useful (but approximate) analogy to 
electrical circuit 

Driving force: voltage drop or pressure difference 
Flowing quantity: electrical charge or molecules 
Flow: electrical current or throughput 
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Combining conductances 

pU pD 

Q 

pU pD C2 

C1 

In parallel 

etc...21  CCC

In series 

pU pD 

Q 

pU pD 

Q 

C1 
C2 

etc...
111

...

21

21





CCC

etcRRR

Approximate: it overestimate resistance, by neglecting beaming and entrance 
resistance cancelling   
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Derivation: 
• Conservation of flux 
• Definition of C 
 
 
 
 
 
 

21

2,12,1 )(

)(

QQQ

ppCQ

ppCQ

du

du









Reduction of pumping speed by connecting pipe 

Application of the combination of conductances in series.   

pSpSppCQ  *** )(

S* effective pumping speed at the chamber 
S real pumping speed 
p* pressure in the chamber 
p pressure at the entrance of the pump 
C connecting conductance 
Q  throughput through the pipe and into the pump 

CSS

111
*


CS

CS
S




*

or 

S* is less than S!  
Lets plot S*/S reduction of pumping 
speed, against C/S, ratio between 
conductance and pumping speed 

Ex: If the conductance is equal to the 
pump’s speed, we only get 1/2 of it at 
the vessel. To get 80% pumping speed 
at the vessel, we need a conductance 
4x larger than the pumping speed. 

0

0.2

0.4
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1

0 5 10 15 20

S*
/
S 

C/S 
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It is not difficult to show also 
that 
 
 
 
 

Q: outgassing flux [mbar.l.s-1] 
S: pumping speed [l/s] 
C: tube conductance [l/s] 

C

Q
PP

2
01 

S

Q
P

2
0 

PRESSURE PROFILE 

Pressure profile in long tube with localized pumps 

A tube under vacuum will outgas uniformly over its whole internal surface. Pumps are 
installed along the tube.  Due to the limited (i.e., not infinite) conductance of the tube, 
pressure will have maxima at equal distance from two pumps and minima above the pumps.  

From the continuity 
equation, it is obvious that: 

Notice differences in pressure measurement in long tubes, depending on their distance to the pump! 
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Conductance calculation 
Conductance in viscous flow 

Conductance in molecular flow 
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Conductances and flow regimes 

Let’s anticipate, that the 
conductances of pipes will differ in 
different flow regimes:  
 
• In continuum flow, they are 
proportional to mean pressure p.  
• In molecular flow they are not a 
function of pressure.  
• In Knudsen flow, a transition 
between the two types of flow, 
conductances vary with Knudsen 
number.  
• At the same diameter, 
conductance in continuum regime 
is much larger than in molecular 
regime 

10-2 [mbar] 10-3 10-1 1 

1 

10-4 10 

Above pD>6.4 mbar.mm, flow is viscous 
Below pD<0.064 mbar.mm, flow is molecular 

106 

On the figure: the equal conductivity 
curves on a p,d graph 
- read for example: 106 l/s and 1 l/s 
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Reynolds number Re compares the two effects 

Continuum (viscous) flow through pipes 

Viscous gas flow may be: 



 huD
Re

 = density of the fluid 
 = viscosity 

u = flow velocity 
Dh = hydraulic diameter 

LAMINAR:  
gas flows smoothly in stream lines, 
parallel to the duct walls. 

TURBULENT :  
gas flows chaotically and 
irregularly brakes up into 
vortexes. 

Viscous forces are stabilizing Inertial forces are 
destabilizing 

Inertia forces 
compared to 
viscous forces 

Re<2000 Re>2000 

B

A
Dh

4


A = cross sectional area 
B = wetted perimeter 
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In most cases treated in 
vacuum technology, we are in 
laminar conditions 
 
 
 
 
 



Viscous laminar flow - Poiseuille 

Circular cross section, long tube 
Diameter D 
Between pressures p1 and p2 

With  viscosity of the fluid 

This is valid only for long tubes, i.e., rarely in vacuum… But it helps understanding this 
matter. 

 21
21

4

2128
pp

pp

L

D
Q 







 






NB:  
• In viscous flow, conductance is proportional to pressure! Already seen 2 slides ago 
• The effect of diameter D on C is with D4, so doubling D means a factor 16 in conductance 
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p
L

D
C





128

4

 p is the average pressure between entrance and exit 
pressure 



Viscous regime: Short tubes conductance 

The difficulty here is that the velocity profile 
changes at the aperture, with a minimum 
cross section at the aperture, then with 
oscillations of contraction/expansion before 
reaching fully developed flow.  

Nomograms may be used. 
 
 
Particular case of practical use in vacuum:  
choked (or sonic) flow. 
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Choked flow 

An effect of compressibility of a gas… 

pU pD 

In choked flow,  throughput is not depending on 
downstream pressure pD any longer, but only on upstream 
pressure pU.  
This happens when flow velocity in the restriction is equal 
to sound velocity. For air, it occurs when pD<0.53 pU.  
 
Even if pressure pD is lowered, throughput remains 
constant.  

Q/Qc 

pD/pU 

1 

1 0 0.5 

Keep pU constant and lower progressively pD… At some 
value of pD/pU, you attain choked (or blocked) flow. 

),( TKApQ Uc gas pSQ 

Remember… 

French: flux sonique 
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A choked aperture has 
constant pumping speed.  

][cm,[l/s]20 2AASc  Perfect flow control! Controlled soft venting! …and more 



Molecular Flow: Introduction 

• Randomizing effect of molecule wall collisions: there are no favored directions, the 

probability of emerging in any direction is the same, not related to incident direction 

• Kn>1:  the mean free path of the particles is large compared with the  size of the container 

•  The molecules-wall collisions dominate the gas behavior 

37 

In molecular flow, a molecule is not 
“sucked” away, it falls on the pump 
entrance as the result of random motion. 

Important to learn about the rate of 
molecular impingements on a elementary 
surface 



• Impact Rate J: Number of molecular impacts on a surface per unit time and unit surface 

Impact rate 

Tmk

pvn
J

B24


n = density of molecules 

38 

4

v
nJ 

The molecules impacting on a surface dS are 
those having velocity vectors comprised 
between v and v+dv and direction q. Integrated 
over the solid angle: 

m

kT
v



8


average or mean speed in 
Maxwell-Boltzmann 
distribution 


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
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AJJ
dt

dN
)( 21 

Aperture of area A in a thin wall separating two 
regions of pressures p1 and p2 

A J1 

J2 

p1, n1 p2, n2 

)(
2

21 ppA
m

RT
Q 













dt

dN
kTQ

 

CA  A
RT

2m


T

m

 

CA 11,8 A l s1  

with A in cm2

For air at 20C 
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Conductance of an aperture 

Ideal gas law: 
definition of flow 

Net flux= difference 
between currents in 
either direction 

)( 21 ppCQ  Definition of conductance 



DN 
CA  Conductance 

(l/s) 

16 24 

25 58 

40 148 

63 368 

100 927 

150 2085 

200 3707 

 
2

18,11

cm

slACA

 in A with

  

gas

airgas

A

air

A

air

A

M

M
CC

rC



 28.11 
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Conductance of standard flanges 

Conductance of (infinitely thin) flange of standard opening  

How to transform from N2 to other gases? 
 
MEMO 
Small mass ↔ large conductance 

NB 
Usually, we put a ~500l/s pump on a DN150. 
The flange’s conductance is >4x the pump’s 
pumping speed. 

Conductance of standard 
flanges for N2 at 296K 



Maximal pumping speed 

From the preceding, we can see that the maximal pumping speed of a high vacuum pump 
cannot be larger than the conductance of its aperture.   
 
The maximum throughput a pump can feature is when all molecules crossing its aperture 
don’t return into the vacuum vessel. 

l/s][3.9 2

2
DCN  maximal pumping speed for nitrogen, for a pump of 

aperture diameter D (in cm). 
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Maximal pumping speed 

maximal pumping speed for 
nitrogen, for a pump of 
aperture diameter D (in cm). 

High vacuum pumps do not 
“suck” molecules into them. 
They rather  prevent (a certain 
number of) molecules having 
crossed by chance their 
aperture to travel back to the 
vacuum vessel.  
 
If the pumping mechanism 
were 100% efficient, the 
pumping sped would be equal 
to the conductance of the 
entrance. 

Pumping speed is highest when backstreaming into the vessel is lowest. 
42 

From the preceding, we can see that the maximal pumping speed of a high vacuum pump 
cannot be larger than the conductance of its aperture.   
 
The maximum throughput a pump can feature is when all molecules crossing its aperture 
don’t return into the vacuum vessel. 

l/s][3.9 2

2
DCN 



Transmission probability α 
If N molecules arrive at the entrance plane of a duct, a number Nα reach the exit plane, with 
a<1. A number N(1-α) return to the entrance. Remember that N=J A with A area and J 
impingement rate of molecules at the aperture of the duct. 

J1A J2A 

ACC a

AJJ )( 12 aNet flux from entrance to exit 

Of the J1A 
molecules 
entering the duct,  
a· J1A reach its 
exit 

Of the J2A molecules 
entering the duct 
from downstream,  a 
J2A reach its entrance 
plane 

kTAJJQ  )( 12aNet throughput from entrance to exit 

Substituting the 
expression  mkT

p
J

2
  we make p 

appear.  

)( 12 ppCA  a The conductance of a 
component is the conductance 
of its aperture times a 
transmission probability 

M

TR
AppQ o


a

2
)( 12 
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Transmission probability calculations 

The concept of transmission probability was introduced by Clausing (1932). The values 
he has calculated by integrals (sometimes called Clausing factor) are still widely used 
for circular tubes and are accurate to ~ percent.  Nomograms often use his values. 

Cole (1976) refined the same methods, his values are very accurate.  

Dushman (1992) has proposed an analytical formula (next slide) easy to apply, but not 
completely accurate. We use it for quick estimations. 

Livesey (1998-2004) collected all transmission probability data, analyzed them and 
obtained analytical formulas (2004), very useful for computer calculation.  For exotic 
forms, we have proposed his values, which are fairly simple and accurate to <1% over a 
wide L/D range.  

One of the best ways to calculate transmission probabilities is the statistical Monte-
Carlo method, which can be applied with success to complicated shapes which escape 
from a simple geometrical treatment.  

 

C  aCA
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Dushman transmission probability for cylindrical 

tubes 

to be used for “back of the envelope” 
estimations 

[cm]in ,
3/41

/4.12 3

LD
LD

LD

CC

CC
C

LA

LA







Transmission probability of a cylindrical tube, of 
diameter D and length L, or of form factor L/D. 
 
Dushman 1992 

LA

L

A

L

CC

C

C

C


a D

L




4

3
1

1
a
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[cm]in  3.9 12 DlsDCA

 Aperture 

[cm]in ,4.12 1
3

LDls
L

D
CL

 Long tube 



Cylindrical ducts 

0.1

1

0 2 4 6 8 10

a
 

l/d 

0.01

0.1

1

0 10 20 30 40 50

a
 

l/d 

l/D a [Cole] 
0.05 0.952399 
0.15 0.869928 
0.25 0.801271 
0.35 0.74341 
0.45 0.694044 

0.5 0.671984 
0.6 0.632228 
0.7 0.597364 
0.8 0.566507 
0.9 0.538975 

1 0.514231 
1.5 0.420055 

2 0.356572 
2.5 0.310525 

3 0.275438 
3.5 0.247735 

4 0.225263 
4.5 0.206641 

5 0.190941 
10 0.109304 
15 0.076912 
20 0.059422 
25 0.048448 
30 0.040913 
35 0.035415 
40 0.031225 
45 0.027925 
50 0.025258 

500 0.002646 
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Pumping speed measurement 

49 

S 

Introduce a known throughput qpV above the pump and 
measure pressure p at the inlet 

o

pV

pp

q
S


 op Pressure when  0pVq

Gas flow qpV may be measured by a precise flowmeter or in a 
double-dome with known conductance between the domes 

Measure pressure p in front of the pump is problematic: 
directional gas flow! 
Pressure is defined in an enclosed system, at equilibrium. 

qpV 

p 

To avoid perturbation of the isotropic (i.e. uniform) Maxwellian distribution by the pump 
inlet, one would need an infinitely large volume.  
Solution:  Fisher-Mommsen dome (double and “isotropic”) 



Fisher-Mommsen dome 
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E. Fischer, H. Mommsen, Vacuum 17, 309 (1967) 

The Fisher Mommsen dome has geometry, dimensions and position of the gauge 
such that measured pressures are identical to those measurable in the ideal case. 

Thermodynamically, p is defined only in an enclosed system 
at equilibrium.  
To approach isotropy, we need a “infinite volume” dome, 
and gauges far from the pump. The gauge should then 
measure a isotropic, Maxwellian gas distribution.  
 
The inlet C and pump S should have a negligible effect on 
the distribution.  

)1(
1

2

1


p

p
C

p

q
S

pV

for pumping speed measurement 



From the table of transmission probabilities,  molecular flow transmission probability 
for a pipe whose length is equal to its diameter is 0.51. This means that only about ½ 
of the molecules that enter it, pass through. What fraction will get through for a pipe 
with L/D=5?  

a=0.19 

The molecular flow transmission probability of a component with entrance area 4cm2 is 
0.36. Calculate its conductance for nitrogen at (a) 295K, (b) 600K. 

From CA=11.8A l/s (with A in cm2) for nitrogen at 295K, and C=aCA, we get C=17l/s.  
 
The effect of temperature is with √T, conductance being proportional to √T. We must 
divide by √295 and multiply by √600, to obtain C=24 l/s.  

Examples 
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A component has a molecular flow conductance of 500l.s-1  for nitrogen. What will its 
conductance be for (a)hydrogen, (b)carbon dioxide? 

We have to multiply by the square root of the molar mass of nitrogen (N2, M=28) and 
divide by the square root of the molar mass of hydrogen (H2, M=2) or carbon dioxide 
(CO2, M=44). 
In the first case, this gives a factor 3.74, in the second, a factor 0.8.  
So the conductance for hydrogen will be 3.74 times larger, the one for carbon dioxide 0.8 
times larger. We get 1870l.s-1  for hydrogen and 399l.s-1  for carbon dioxide.  
 
Notice that the square root factor “damps “ the effect of mass, but nevertheless this 
factor is ~4 for hydrogen if compared to air…. 

By what factor will the molecular flow conductance of a long pipe be increased, if its 
diameter is doubled?  

With the simplified formula of Dushman for long tubes in molecular flow, we see that the 
effect of D is with D3. 
So doubling D will increase conductance by a factor 8 !! 

Examples 

52 



A vessel of volume 3m3 has to be evacuated from 1000 mbar to 1 mbar in 20 min. What 
pumping speed (in m3 per hour) is required? 

How long will it take for a vessel of volume 80 l connected to a pump of speed 5 l/s to be 
pumped from 1000 mbar to 10 mbar? What is the time per decade? 









p

p

S

V
t 0ln

We apply the formula for the rough vacuum regime (which neglects 
outgassing), to obtain: t=6.9V/S. So S=6.9V/t=62m3/h  
Notice that 3m3 is the typical volume of a Booster sector, of a SPS 
arc sector. With half this pumping speed, time is doubled... 

)10ln()10ln(,3.2)10ln( aa HINT: 

As above: ln(po/p)=4.6, so t=4.6V/S=4.6.16≈80s 

Time per decade: 5.2.3s=12s 

Examples 
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In a SPS transfer line, the diameter of the pipe is ~60mm, the distance between pumps ~60m. 
The effective pumping speed of each ionic pump is ~15 l/s, including a correction for the 
connecting element. Let’s assume an outgassing rate of 3.10-11mbar.l.s-1.cm-2, typical after 100h 
pumping time. 
Calculate the maximum and minimum pressure measured at a pressure gauge in a segment 
between 2 pumps.  

[cm]in ,4.12 1
3

LDls
L

D
CL



Formulas to use: 

LC

Q
PP

2
minmax 

S

Q
P

2
min 

Example: pressure profile 
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[cm]in ,4.12 1
3

LDls
L

D
CL



LC

Q
PP

2
minmax 

S

Q
P

2
min 

Example: pressure profile 
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