

Examples to Electron Sources

Dr. Öznur METE

University of Manchester The Cockcroft Institute of Accelerator Science and Technology **İletişim Bilgileri** <u>oznur.mete@cockcroft.ac.uk</u> <u>oznur.mete@manchester.ac.uk</u> <u>www.cern.ch/omete</u>

1

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples from real life observables
- Conclusions and outlook

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples from real life observables
- Conclusions and outlook

Alternative Technologies 1: Thermionic Sources

The existing thermionic gun for the CLIC Test Facility 3

- The continuous 1.6 µs long drive beam pulse is generated by a thermionic gun,
- then, time structure is produced by
 - ▶ three 1.5 GHz sub-harmonic bunchers
 - ▶ a S-band pre-buncher
 - ▶ a traveling wave buncher
- beam proceeds to two accelerating sections.

Alternative Technologies 1: Thermionic Sources

The existing thermionic gun for the CLIC Test Facility 3

Parameter	Specification
Energy [MeV]	20
Current [A]	3.5
Pulse Train Duration [µs]	1.6
Number of Bunches / Train	2310
Bunch Separation [ns]	0.67
Bunch Length (FWHM) [ps]	8
Charge / Bunch [nC]	2.33
Energy Spread (%)	<1
Normalized Emittance [mm mrad]	<25

Alternative Technologies 1: Thermionic Sources

The existing thermionic gun for the CLIC Test Facility 3

Problem, Parasitic Charge (Satellite Bunches)

Streak camera measurements can reveal the parasitic charge.

- 7-8% parasitic charge (satellite bunches) due to the sub-harmonic bunchers.
- The charge inside the satellite bunches is unusable for the rest of the operation,
- Disturbs the acceleration of the main beam.
- Compactness, flexibility, stability?

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples from real life observables
- Conclusions and outlook

- A photoinjector with the specifications of CTF3 thermionic gun.
- ▶ The project is in the framework of the "Coordinated Accelerator Research in Europe (CARE)" program.

- A photoinjector is an electron source that uses laser pulses in order to extract electrons from the surface of a metallic or semiconductor cathode by using the photoemission process.
- The electron beam resembles the temporal structure of the laser beam therefore it is a compact system without any need for an additional bunching system.
- An **RF cavity** is used for rapid acceleration of the electrons after the emission.
- Solenoid magnets are placed in order to focus the space charge dominated beam and achieve the emittance compensation.

A collaboration, "Laboratoire de l'Accélérateur Linéaire (LAL)" RF gun; "Rutherford Appleton Laboratory (RAL)" Laser; "European Organization for Nuclear Research (CERN)" Photocathode production, Overall coordination, Commissioning.

Research objectives

- Comprehensive simulations for the PHIN photoinjector beam dynamics,
- Optimization of the working point providing the specifications,
- Full experimental characterization of the PHIN beam for short and long pulse trains,
- Development of a single shot emittance measurement system for space charge dominated beams,
- To measure the beam properties and their stability along the bunch train (time-resolved measurements),
- ▶ To compare the measurement results with the simulations,
- Eventually, to study the consequences of the findings to constitute a preliminary RF gun design for CLIC-DB injector.

- The basic concepts and the implementation of the photoinjector date back to 1980s. But, the PHIN photoinjector is novel due to the following reasons:
- high charge specification of 2.33 nC
- ▶ 1.2 µs long pulse train generation with 1908 bunches,
- challenging stability requirements: amplitude (charge) stability requirement of 0.25%,

A practical model for the optimization studies, C. Travier's Model

- Production of the specified charge value, transmission,
 - The nominal laser spot size,
 - Maximum achievable gradient,
 - The emission phase of the particles with respect to the RF field,

Compromise between minimum emittance and minimum energy spread,

- The proper beam focusing for the emittance compensation,
- Eventually, determination of a working point for a particular set of specifications.

What can you get from a PHIN type photoinjector?

Parameter	Specification	Achieved
RF		
RF Gradient (MV/m)	85	85
RF Frequency (GHz)	2.99855	2.99855
Electron Beam		
Charge per Bunch (nC)	2.33	4.4
Charge per Train (nC)	4446	5800
Train Length (ns)	1273	1300
Number of Bunches/Train	1908	1950
Current (A)	3.5	6.6
Normalized Emittance (mm mrad)	<25	14
Energy (MeV)	5.5	5.5
Energy Spread (%)	≤1	0.7
Laser and Cathode		
Charge Stability (%)	<0.25	0.8-2.4
Cathode	Cs2Te	Cs2Te
Quantum Efficiency (%)	3	18 (peak)
UV Laser Energy / Pulse (nJ)	370	400
Micropulse Repetition Rate (GHz)	1.5	1.5
Macropulse Repetition Rate (Hz)	1-5	1-5

- All the specifications have been fulfilled during the commissioning (except the charge stability)
- A feedback stabilization system is planned to be built for the laser intensity stability in order to improve the charge stability.
- Correlation between the electron beam, the laser and the RF pulse shape has been understood via the measurements along the pulse train.
- All measurement results can be reproduced successfully by the single bunch simulations.

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples from real life observables
- Conclusions and outlook

Alternative Technologies 3: Thermionic RF Systems

Femtosecond electron bunches from an RF-gun

Sakhorn Rimjaem^{a,*}, Ruy Farias^b, Chitrlada Thongbai^a, Thiraphat Vilaithong^a, Helmut Wiedemann^c

^aFast Neutron Research Facility, Physics Department, Chiang Mai University, P.O. Box 217, Chiang Mai 50202, Thailand ^bLaboratorio National de Luz Sincrotron, LNLS, Campinas, Brazil ^cApplied Physics and SSRL,/SLAC Stanford University, Stanford, CA, USA

> Received 8 December 2003; received in revised form 3 May 2004; accepted 27 May 2004 Available online 29 July 2004

Nuclear Instruments and Methods in Physics Research A 533 (2004) 258–269

Alternative Technologies 3: Thermionic RF Systems

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.

- Some examples from real life observables
- Conclusions and outlook

- Continuous pulses from Nd:YLF oscillator @ 1.5 GHz,
- Several amplification stages from 6.7 nJ to 370 nJ (after UV conversion) per pulse,
- Pulse train length adjustment to 1.2 µs by using Pockels cells
- UV conversion
- Illuminates a Cs2Te cathode

Dr. O. Mete, HPFBU2014, Gaziosmanpaşa Üniversitesi, Tokat

RF Gun

0

17.5

Two coils for the proper focusing of the beam.

- Charged particles emit Optical Transition Radiation (OTR) while crossing a boundary with different dielectric properties.
- OTR is used to measure the beam profile as a diagnostics tool.
- In PHIN, two OTR monitors for emittance-meter (MTV1) and spectrometer (MTV2).
- OTR can be detected by a ICCD (Intensified Charge Coupled Device) camera,
- Gateability of ICCD is used for the time-resolved measurements.

Time-Resolved OTR Profiling

- Transverse emittance has been measured by using multi-slit (MS) method.
- The MS method is suitable for the space charge dominated lowenergy beams.
- Gateability of ICCD is used for the time-resolved measurements.

According to the MS method

- The MS mask is introduced in front of the beam,
- The beam is sliced into individual beamlets,
- The moments of the beamlets are determined from the beam profile,
- And the emittance of the former beam is calculated.
- Multi-slit method has been implemented for the first time at CERN during the PHIN commissioning studies.
- Research Outcome: Development of an analysis method and producing several algorithms by considering <u>different background (noise) patterns</u>.
- PHINEMA: PHIN photo-injector Emittance Measurement and Analysis software

Emittance Calculation

The definition of the transverse geometric emittance.

$$\epsilon_x \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

$$< x'^{2} > = \frac{\sum_{i=1}^{N} \rho_{i}(x'^{2}_{i,c} - \sigma'^{2}_{i})}{\sum_{i=1}^{N} \rho_{i}}$$

$$< xx' > = \frac{\sum_{i=1}^{N} \rho_i x_{i,c} x'_{i,c}}{\sum_{i=1}^{N} \rho_i}$$

- A magnetic spectrometer has been used for the energy measurements.
- Principle: measurement of the beam momentum distribution after a dipole with a known magnetic field.
- Beam momentum distribution can be observed by using an OTR profile monitor or a segmented dump.

Possible Background Sources for OTR Measurements

- the electrons that are not stopped by the slit-mask,
- the overlapping between the individual beamlets,
- x-rays
- external light pollution
- radiation due to the heating of the OTR screen

Possible Cure

First of all, consider the intensity of the beam, gain and spectral sensitivity of the camera, type of the observation screen, always respect the signal/noise ratio.

- thickness of the multi-slit mask,
- optimization of distance between the screen and the mask,
- shielding the camera properly,
- shielding or using a light-tight enclosure,
- offline treatment (usually the background has a Gaussian distribution in this case),

- In the most of the charge measurements, the FCT has been preferred due to its location after the RF gun.
- Nevertheless, the FC is the most useful in order to study the charge transmission along the downstream of the beamline.
- In principle, the charge production saturates with the increasing laser energy per pulse.
- The maximum achievable charge has been measured as 4.4 nC during the commissioning which even exceeds the specification.

0.5

0

50

100

150 200

250 300

Laser Energy/Pulse on the Cathode (nJ)

The maximum achievable charge has been measured as 4.4 nC during the commissioning which even exceeds the specification.

Charge Production (17.06.2010)

400

450

500

350

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples to real life observables
- Conclusions and outlook

Scan: Particle phase 0-120°

Scan: RF phase 10-100°

No focusing: Excessive particle loss ~30 cm.

No focusing: Emittance is space-charge dominated, significant particle loss leads to "artificial" emittance drop.

No focusing

Bunch lengthening with increasing focusing. Coupling between transverse and longitudinal planes?

Particle Distribution, Real Space

For initial distribution, Gaussian distribution was taken into account.

Contents

- Alternative technologies: "pro et contra"
 - Historical, thermionic source;
 - Modern, laser-driven RF systems (aka photoinjector);
 - Conservative, thermionic RF systems.
- Instrumentation (for a Photoinjector)
- Some examples to real life observables
- Conclusions and outlook

Conclusions and Outlook

Different technologies available, thermionic, laser-driven RF, thermionic RF,

Cold atom trap based electron source?

All options should be studied in terms of cost, robustness, novelty, integration, system requirements,

α-magnet for bunch compression should be studied in more detail; longitudinal phase space, bunch compression,

Let's continue with real life examples and simulate a photoinjector by using PARMELA code...