Continuous gravitational waves and neutron star microphysics

Ben Owen
PENNSTATE

NS2014 @ Florence

2014-03-28

Continuous gravitational waves

- Talks at this meeting by Keitel, Shaltev, Palomba
- Signals long compared to observations (1–2 yr)
- Implies slowly evolving frequency (+ Doppler)
- Sources must be rotating "neutron" stars
- Hard to detect, but...
- Many cycles = much info

Four types of continuous GW searches

Credit: M. van der Sluys

Ben Owen

- Knowledge = sensitivity
- Different constraints from EM
- Different physics at work

How to get a rotating quadrupole?

- Elastic mountains
- Magnetic mountains (2 kinds)
- Modes

Credit: Eric Priest

Payne (ApJ 2005)

Elastic mountains

- Require a solid part (NS crust, hybrid star core, ...)
- How big could they be?
- Quadrupole ~ (structure) × (shear modulus) × (strain)
 - Shear modulus: composition (huge), charge separation, thermo
 - Breaking strain: pressure crushes away voids & defects
 - Structure: equation of state, bulk properties, general relativity
- Latest answers (Johnson-McDaniel & Owen 2013)
 - Normal neutron stars up to 10^{40} g cm²
 - Hybrid stars up to 10^{42} g cm²
 - Solid quark stars up to 10⁴⁴ g cm²

Elastic mountains

- What could drive them? Accretion
 - **E-capture** has small T dependence
 - Onion layers move up under hot spot
 - Enough w/10% lateral $\Delta T/T$
 - (Torque balance model)

Credit: Ushomirsky et al. (MNRAS 2000)

- What could drive them in young neutron stars? ???
- How long could they last? Viscoelastic creep? ???

Magnetic mountains

- Can happen, must happen in all stars (Jones 1970s)
- How big could they be?
 - Buried: Q ~ 10^{39} g cm² (B_{int}/10¹⁵ G)²
 - Accreting: also $Q \sim 10^{39} \text{ g cm}^2$ at Eddington
- How long could they last?

Credit: Eric Priest

R-modes (Stergioulas Living Review 2003)

Credit: C. Hanna / B. Owen

- Coriolis restoring force
- Mode freq. $\sim 4/3$ spin
- Mostly δ-velocity
- Little δ -density
- Prograde / retrograde
- CFS instability driving
- Can beat damping!
- Can last few kyr
- Or throughout accretion

Inertial frame: prograde

Corotating frame: retrograde

Credit: Lindblom et al. (PRD 1999)

- GW driving wins above
- Damping wins below
- **Bulk viscosity** at high T (URCA neutrinos)
- Shear viscosity at low T (n-n scattering)
- Bare minimum: no crust, superfluidity, etc.
- Young star & accreting star scenarios

- Crust adds huge viscosity at low temperatures
- Needed for LMXBs
- Viscous boundary layer
- Heat conduction
- Hydro is different (slip condition)

Credit: Lindblom et al. (PRD 2000)

- How big could they get?
 - Enough to be observable in principle now (Owen 2010)
 - Nonlinear hydro 3-mode coupling (Bondarescu et al. various)
 - Nonlinear viscosity (Alford & various)
- How long could they last?
 - During accretion & a bit after
 - See "how big could they get" (few kyr, young SNRs)
- Caveat:
 - High frequency dependence of GW driving reduces dependence on viscosity coefficients, etc (cf. Alford's talk)

Take-away

- Continuous gravitational waves are hard to detect
- But coupled to lots of microphysics when we do
- Some even with upper limits...?