Hybrid Stars: how can we identify them?

Prof. Mark Alford Washington University in St. Louis

Alford, Han, Prakash, arXiv:1302.4732 Alford, Schwenzer, arXiv:1310.3524

Schematic QCD phase diagram

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

Signatures of quark matter in compact stars

	Miarank	a second	munnaution
	wiicropi	iysicar	properties
hlo		5	

Observable \leftarrow $\stackrel{\text{Introphysical properties}}{(and neutron star structure)} \leftarrow$ Phases of dense matter

	Property	Nuclear phase	Quark phase
mass radius	eqn of state $arepsilon(p)$	known	unknown;
mass, raulus		up to $\sim {\it n_{ m sat}}$	many models

Signatures of quark matter in compact stars

Observable $\leftarrow \frac{\text{Microphysical properties}}{(\text{and neutron star structure})} \leftarrow \text{Phases of dense matter}$

	Property	Nuclear phase	Quark phase
mass radius	oan of state $c(n)$	known	unknown;
mass, radius	equion state $\mathcal{E}(p)$	up to $\sim {\it n_{ m sat}}$	many models
spindown	bulk viscosity	Depends on	Depends on
(spin freq, age)	shear viscosity	phase:	phase:
		npe	unpaired
cooling	heat capacity	npe, μ	CFL
(town one)	neutrino emissivity	$n p e, \Lambda, \Sigma^{-}$	CFL-K ⁰
(temp, age)	thermal cond.	n superfluid	2SC
		<i>p</i> supercond	CSL
glitches	shear modulus	π condensate	LOFF
(superfluid,	vortex pinning	K condensate	1SC
crystal)	energy	I	

Nucl/Quark EoS $\varepsilon(p) \Rightarrow$ Neutron star M(R)

Can quark matter be the favored phase at high density?

Constraining QM EoS by observing M(R)

Does a 2 M_{\odot} star rule out quark matter?

Lots of literature on this question, with various models of quark matter

- MIT Bag Model; (Alford, Braby, Paris, Reddy nucl-th/0411016)
- NJL models; (Paoli, Menezes, arXiv:1009.2906)
- PNJL models (Blaschke et. al; arXiv:1302.6275)
- 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)
- ▶ MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)
- ► Talks by Rischke, Schramm, Dexheimer, Zappalà, Yasutake

We need a model-independent parameterization of the quark matter EoS:

- framework for relating different models to each other
- observational constraints can be expressed in universal terms

A fairly generic QM EoS

Model-independent parameterization with Constant Speed of Sound (CSS)

Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms

"Phase diagram" of hybrid star M(R)

 $\begin{array}{ll} \mbox{Above the red line } (\Delta \varepsilon > \Delta \varepsilon_{\rm crit}), & \qquad \frac{\Delta \varepsilon_{\rm crit}}{\varepsilon_{\rm trans}} = \frac{1}{2} + \frac{3}{2} \frac{p_{\rm trans}}{\varepsilon_{\rm trans}} \\ \mbox{(Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072)} \end{array}$

Disconnected branch exists in regions D and B.

Sensitivity to NM EoS and c_{QM}^2

• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

• Higher $c_{\rm OM}^2$ favors disconnected branch.

Observability of hybrid star branches

- Connected branch is observable if p_{trans} is not too high and there is no disconnected branch
- Disconnected branch is always observable

Constraints on QM EoS from max mass

Alford, Han, Prakash, arXiv:1302.4732; Zdunik, Haensel, arXiv:1211.1231

• Max mass can constrain QM EoS but not rule out generic QM • For soft NM EoS, need $c_{\rm QM}^2 \gtrsim 0.4$

Quark matter EoS Summary

- CSS (Constant Speed of Sound) is a generic parameterization of quark matter EoS at densities just above the transition.
- Any specific model of quark matter corresponds to particular values of the CSS parameters (*p*_{trans}/ε_{trans}, Δε/ε_{trans}, c²_{QM}). Its predictions for hybrid star branches then follow from the generic CSS phase diagram.
- ► Existence of $2M_{\odot}$ neutron star \rightarrow constraint on CSS parameters. For soft NM we need $c_{QM}^2 \gtrsim 0.4$ ($c_{QM}^2 = 1/3$ for free quarks).
- More measurements of M(R) would tell us more about the EoS of nuclear/quark matter. If necessary we could enlarge CSS to allow for density-dependent speed of sound.

r-modes and gravitational spin-down

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

The unstable *r*-mode can spin the star down very quickly, in a few days if the amplitude is large enough (Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom

astro-ph/0101136).

noutron star spins quickly	$y \Rightarrow$	interior viscosity must be high
neutron star spins quickly		enough to damp the <i>r</i> -modes

r-modes and old pulsars

Above curves, r-modes go unstable and spin down the star

Spindown via r-modes of an old neutron star

Steady-state spindown curve is determined by amplitude $\alpha_{\rm sat}$ at which r-mode saturates.

This determines final spin frequency Ω_f . Stars with $\Omega < \Omega_f$ are not undergoing *r*-mode spindown.

r-mode spindown trajectories

(Alford, Schwenzer, arXiv:1310.3524)

Explanations:

1) Instability boundary is wrong (additional damping).

2) Many neutron stars (ms pulsars and LMXBs) are in the instability region, undergoing r-mode spindown with *low* saturation amplitude

- $\alpha_{\rm sat} \sim 10^{-7}$
- $T\gtrsim 10^7\,{
 m K}$ (r-mode heating)
- they are emitting grav waves

R-modes Summary

- r-modes are sensitive to viscosity and other damping characteristics of *interior* of star
- Mystery: There are stars *inside* the instability region for standard "nuclear matter with viscous damping" model.
- Possible explanations:
 - Microphysical extra damping (e.g. quark matter)
 - Astrophysical extra damping (some currently unknown mechanism in a nuclear matter star)
 - "tiny r-mode" = very low saturation amplitude
- ► Need:
 - Better temperature measurements
 - Detect grav waves from ms pulsars (beyond advanced LIGO)
 - Better theoretical understanding of r-mode damping and saturation mechanisms

How will we identify hybrid stars?

EoS: density discontinuity at nuclear/quark transition leads to connected and/or disconnected branches in M(R). We need:

- better measurements of M and R
- theoretical constraints on basic properties of QM EoS
 - $(p_{\rm trans}/\varepsilon_{\rm trans}, \Delta \varepsilon/\varepsilon_{\rm trans}, c_{\rm QM}^2)$
- knowledge of nuclear matter EoS

Spindown: extra damping in some forms of quark matter can explain current observations, but other scenarios (astrophysical extra damping; r-modes with tiny amplitude) have not been ruled out.

We need:

- Better theoretical understanding of r-mode damping and saturation mechanisms
- Better temperature measurements (ideally, of ms pulsars too)
- Detect grav waves from old pulsars (beyond advanced LIGO) or very young neutron stars (advanced LIGO)