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Schematic QCD phase diagram
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Signatures of quark matter in compact stars

Observable ← Microphysical properties
(and neutron star structure)

← Phases of dense matter
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Nucl/Quark EoS ε(p) ⇒ Neutron star M(R)
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Recent
measurement:

M = 1.97± 0.04M�

Demorest et al,
Nature 467,
1081 (2010).

Can quark matter be the favored phase at high density?



Constraining QM EoS by observing M(R)

Does a 2M� star rule out quark matter?

Lots of literature on this question, with various models of quark matter

I MIT Bag Model; (Alford, Braby, Paris, Reddy nucl-th/0411016)

I NJL models; (Paoli, Menezes, arXiv:1009.2906)

I PNJL models (Blaschke et. al; arXiv:1302.6275)

I 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)

I MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)

I Talks by Rischke, Schramm, Dexheimer, Zappalà, Yasutake

We need a model-independent parameterization of the quark matter
EoS:

I framework for relating different models to each other
I observational constraints can be expressed in universal terms



A fairly generic QM EoS

Model-independent parameterization with Constant Speed of Sound
(CSS)
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Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms
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“Phase diagram” of hybrid star M(R)

Soft NM + CSS(c2
QM =1)

6.05.03.0
ntrans/n0

B

A

2.0 4.0

C

ncausal

D

Δε
/ε

tr
an

s =
 λ

-1

0

0.2

0.4

0.6

0.8

1

1.2

ptrans/εtrans

0 0.1 0.2 0.3 0.4 0.5
transtrans

εp

∆
ε

ε
tr
a
n
s

Above the red line (∆ε > ∆εcrit),
connected branch disappears

∆εcrit
εtrans

=
1

2
+

3

2

ptrans
εtrans

(Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072)

Disconnected branch exists in regions D and B.



Sensitivity to NM EoS and c2
QM

c2
QM =1/3

B

A

N
L3

C

H
LPS

D

Δε
/ε
tr
an
s

0

0.2

0.4

0.6

0.8

1

1.2

ptrans/εtrans
0 0.1 0.2 0.3 0.4 0.5

c2
QM =1

B

A

N
L3

C

H
LPS

D

Δε
/ε
tr
an
s

0

0.2

0.4

0.6

0.8

1

1.2

ptrans/εtrans
0 0.1 0.2 0.3 0.4 0.5

• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

• Higher c2
QM favors disconnected branch.



Observability of hybrid star branches

Measure length of hybrid branch by

∆M ≡
(

mass of heaviest
hybrid star
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• Connected branch is observable if ptrans is not too high
and there is no disconnected branch

• Disconnected branch is always observable



Constraints on QM EoS from max mass

QM + Soft Nuclear Matter
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•Max mass can constrain QM EoS but not rule out generic QM

• For soft NM EoS, need c2
QM & 0.4



Quark matter EoS Summary

I CSS (Constant Speed of Sound) is a generic parameterization of
quark matter EoS at densities just above the transition.

I Any specific model of quark matter corresponds to particular
values of the CSS parameters (ptrans/εtrans, ∆ε/εtrans, c2

QM).
Its predictions for hybrid star branches then follow from the generic
CSS phase diagram.

I Existence of 2M� neutron star → constraint on CSS parameters .

For soft NM we need c2
QM & 0.4 (c2

QM = 1/3 for free quarks).

I More measurements of M(R) would tell us more about the EoS of
nuclear/quark matter. If necessary we could enlarge CSS to allow
for density-dependent speed of sound.



r-modes and gravitational spin-down

An r-mode is a quadrupole flow
that emits gravitational radiation. It
becomes unstable (i.e. arises spon-
taneously) when a star spins fast
enough, and if the shear and bulk
viscosity are low enough.

Side viewPolar view

mode pattern

star

The unstable r -mode can spin the star down very quickly, in a few days
if the amplitude is large enough
(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom

astro-ph/0101136).

neutron star spins quickly ⇒ interior viscosity must be high
enough to damp the r -modes



r-modes and old pulsars
Above curves, r-modes go unstable and spin down the star
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Possibilities:
• additional damping
(e.g. quark matter)
• r-mode spindown is very
slow

(Alford, Schwenzer,
arXiv:1310.3524

Haskell, Degenaar, Ho,
arXiv:1201.2101)



Spindown via r-modes of an old neutron star
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r-mode spindown trajectories
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(Alford, Schwenzer, arXiv:1310.3524)

Explanations:

1) Instability boundary is
wrong (additional damping).

2) Many neutron stars (ms
pulsars and LMXBs) are in
the instability region,
undergoing r-mode spindown
with low saturation
amplitude
• αsat ∼ 10−7

• T & 107 K (r-mode
heating)
• they are emitting grav
waves



R-modes Summary

I r-modes are sensitive to viscosity and other damping characteristics
of interior of star

I Mystery: There are stars inside the instability region for standard
“nuclear matter with viscous damping” model.

I Possible explanations:
I Microphysical extra damping (e.g. quark matter)

I Astrophysical extra damping (some currently unknown
mechanism in a nuclear matter star)

I “tiny r-mode” = very low saturation amplitude

I Need:
I Better temperature measurements
I Detect grav waves from ms pulsars (beyond advanced LIGO)
I Better theoretical understanding of r-mode damping and

saturation mechanisms



How will we identify hybrid stars?
EoS : density discontinuity at nuclear/quark transition leads to

connected and/or disconnected branches in M(R).
We need:

I better measurements of M and R
I theoretical constraints on basic properties of QM EoS

(ptrans/εtrans, ∆ε/εtrans, c
2
QM)

I knowledge of nuclear matter EoS

Spindown : extra damping in some forms of quark matter can explain
current observations, but other scenarios (astrophysical extra damping;
r-modes with tiny amplitude) have not been ruled out.
We need:

I Better theoretical understanding of r-mode damping and saturation
mechanisms

I Better temperature measurements (ideally, of ms pulsars too)
I Detect grav waves from old pulsars (beyond advanced LIGO) or

very young neutron stars (advanced LIGO)


