Simulations of X-ray Bursts and Superbursts

Sofie Fehlmann

J. Reichert, F.-K. Thielemann

University of Basel, Switzerland

Structure and Signal of Neutron Stars, from Birth to Death 2014

Florence, 24-28 March 2014

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Neutron star

	X-ray burst	Superburst
Energy release [ergs] Luminosity [ergs/s] Burst time Burst recurrence	$ \begin{array}{r} 10^{39} \\ 10^{38} \\ \text{seconds - minutes} \\ \text{hours - days} \end{array} $	10 ⁴² 10 ³⁸ hours - days years

Ignition of Superbursts

- Accretion of fuel
- Unstable He- and H-burning → X-ray burst
- Ashes are accumulated
- Superburst

Ignition of Superbursts

- Accretion of fuel
- Unstable He- and H-burning → X-ray burst
- Ashes are accumulated

Superburst

Superburst simulations are computationally expensive

1D Simulation of the Outer Layers of a Neutron Star

Code J. Fisker, S. Fehlmann, M. Liebendörfer

- General relativistic hydrodynamics: AGILE (M. Liebendörfer, 2002)
- Nuclear Network (W. R. Hix & F.-K. Thielemann, 1999)
- Convection
- Heat transport: Conduction and Radiation

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Ashes: Composition after 100 X-ray Bursts

Underlying neutron star: $R_{NS} = 11.06$ km $M_{NS} = 1.4$ M_{\odot}

- Accretion rate: $0.18\dot{m}_{Edd}$
- $Q_{heat} = 0.1 \text{MeV/nuc:}$ Nuclear reactions, neutrino cooling, heat transport (Schatz et al. 2013)

Ashes: Composition after 100 X-ray Bursts

• Underlying neutron star: $R_{NS} = 11.06$ km $M_{NS} = 1.4$ M_{\odot}

- Accretion rate: $0.18\dot{m}_{Edd}$
- $Q_{heat} = 0.1 \text{MeV/nuc:}$ Nuclear reactions, neutrino cooling, heat transport (Schatz et al. 2013)

Superburst ignition: $0.1 \lesssim X(^{12}C) \lesssim 0.3$ (Cumming et al. 2005, Keek et al. 2012)

Varying the heat source

Thermal relaxation of neutron stars

Unknown heat source of several MeVs/nuc A. Turlione et al. 2013, N. Degenaar et al. 2014

Heat source at $\rho = 7 \cdot 10^7 \text{g/cm}^3$

Simulations of X-ray Bursts and Superbursts

Limits of heating

Ignition Conditions

Limits with constant accretion rate

 $Q_{heat} = 2.8 \text{MeV/nuc} \Rightarrow X(^{12}C) \approx 0.14$ $Q_{heat} > 2.9 \text{MeV/nuc} \Rightarrow \text{stable burning}$

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Recurrence time versus crust heating

 t_{recur} is observable

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Recurrence time versus crust heating

New Model with constant recurrence time

 $\Rightarrow X(^{12}C) \le 0.17$

Simulations of X-ray Bursts and Superbursts

New Model with constant recurrence time

 $\Rightarrow \quad X(^{12}C) \leq 0.17$

Is this enough ${}^{12}C$ for a superburst?

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Shift downwards to superburst

Heat source shifted down to $\rho = 2 \cdot 10^8 \text{g/cm}^3$

S. Fehlmann

Simulations of X-ray Bursts and Superbursts

Summary & Conclusion

- Simulations of X-ray burst produce not enough ${}^{12}C$ to ignite superburst
- Unknown heating leads to more ${}^{12}C$
- Mass fraction of ${}^{12}C$ above 0.2 are not explainable with heat source
- Crust heating at $\rho = 10^9 \text{g/cm}^3$ with $X(^{12}C) \ge 0.1$:

 $0.8 \mathrm{MeV/nuc} \le Q_{heat} < 2.2 \mathrm{MeV/nuc}$

Superburst models are currently running

Ignition Conditions: Density

Ignition Conditions: Temperature

Temperature Profile

