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Inhomogeneous structures  
of neutron star crust  

and mechanical properties 



Density  

 ≈ 0⋯ ≈ 10𝜌0 
 

Composition 
• Nucleons + leptons 
•  . . .  + mesons, hyperons 
• quarks + gluons + leptons 

 

Structure & correlation 
• uniform 
• crystal 
• pasta 
• amorphous 
• pairing 
• ….. 

Matter  of neutron stars 



Compressibility (Equation of state).  
 Masses and radii of neutron stars 
 Hadron-quark phase transition 
 Hyperon mixture and/or meson condensation 
 Effects of mixed phase 

 
Rigidity (shear modulus) 

 Torsional oscillation might be directly measured as QPO  
 Mountain height 
 Starquakes  

Our mean field studies of nuclear matter  
• (inhomogeneous) structures of nuclear matter 
• Eos  
• Useful for studies of mechanical strength (rigidity) 

Properties of neutron star matter 



 
  

1
2 * 2 2 * 2

,

1

3

, , , 3
0

( ; , ) 1 exp ( ) ( ) (

For Fermions, we employ Thomas-Fermi approx. with fini

) ,

( ; , ) 1 exp ( ( )) ,

( ) 2 ( ; ,

te

,
(2

(

 

)
)

i n p i i Fi i

e e e C

i p n e i i

n Fn

f p m p m T

f p V T

d p
f

T

p





 

 














  
        

     







r p r r r

r p r

r r p

2 * 2
0 0

2 * 2
0 0

3 3 3

) ( ) ( ) ( ), ,

( ) ( ) ( ) ( ) ( ),

( ) ( ) const, ( ) ( ),

N N N n p e

p Fp N N N C

p n p e

V V V

m g g R

p m g g R V

d r d r d r

 

 

   

 

   

    

    

      

r r r r

r r r r r

r r r r

2 2 ( ) ( )

2 2
0 0

2 2
0 0

2 2
ch

( ) ( ) ( ( ) ( )) ( )

L (

,

( ) ( )

) L 0,   

( , ,

( ( ) ( )),

( ) ( ) ( ( ) ( )),

( ) 4

, ,

(

From

)

,

,

)

s s
N n p

N p n

N p n

C

dU
m g

d

m g

R m R g

V

R

e

V

 

 

 

 

  

   


   

 









  

    



        

 



 

   









r r r r r

r r r r

r r r r

r r

* 3

2 2 2 2 2

*

,

1

Lagrangi

2

1 1 1 1 1 1
( ) ( ) ,

2 2 4 2 4 2

1

n

, )

a

(
4

N M e

N N N N

M

e e e e

N N N

L L L L

L i m g g b e V

L m U m R R m R R

L V V i m e V F F F

m m g

   
     

   
       

  
       




     

      

 



  

 
        

 

       

            
 

  3 41 1
, ( ) ( ) ( )

3 4
N N NU bm g c g    

RMF + Thomas-Fermi  model 

Nucleons interact with each other 
via coupling with 𝜎, 𝜔, 𝜌 mesons. 
Simple but feasible! 



Saturation property of symmetric 

nuclear matter : minimum energy 

𝐸/𝐴 ≈ −16 MeV at  𝜌𝐵 ≈ 0.16 fm−3 . 

Binding energies,  

proton fractions, 

and density profiles 

of nuclei are well 

reproduced. 

RMF + Thomas-Fermi  model 

Nucleons interact with each other 
via coupling with 𝜎, 𝜔, 𝜌 mesons. 
Simple but realistic enough. 



Numerical procedure 

 Divide whole space into equivalent and neutral cubic cells with 
periodic boundary conditions 
 

 Distribute fermions (𝑝, 𝑛, 𝑒) randomly but   𝑑3𝑟 𝜌𝑖(𝑟)  = given 

 
 Solve field equations for 𝜎(𝑟), 𝜔0(𝑟), 𝜌0(𝑟), 𝑉Coul(𝑟) 
 
 Calculate local chemical potentials of fermions μ𝑖(𝑟) 

𝜇𝑖 𝑟 = 𝑉𝑖(𝑟) + 𝑚𝑖
2 + 𝑝𝐹𝑖(𝑟)

2 

 Adjust densities  ρ𝑖(𝑟)  as 
                      μ𝑖 𝑟1 > μ𝑖(𝑟2)               ρ𝑖 𝑟1 ↓ , ρ𝑖 𝑟2 ↑  
                      μ𝑛 𝑟 > μ𝑝 𝑟 + μ𝑒       ρ𝑛 𝑟 ↓ ,  ρ𝑝(𝑟) ↑ 

 
  repeat until ⋕ 
 

To equilibrate  μ𝑖(𝑟)  in  𝒓 and among species  𝒊           

remove 𝑟−dependence     μ𝑖 𝑟 = μ𝑖            
satisfy chemical balances    μ𝑛 = μ𝑝 + μ𝑒

  # 



Fully 3D RMF calculations 

“droplet”  
[fcc] 

ρB = 0.012 fm-3 

“rod”  
[honeycomb] 
0.024 fm-3 

“slab” 
 

0.05 fm-3 

“tube” 
[honeycomb] 

0.08 fm-3 

“bubble”  
[fcc] 

0.094 fm-3 

Yp  = Z/A = 0.5 

proton 

electron 

[Phys.Lett. B713 (2012) 284] 



Advantages  of a three-dimensional calculation 

• Not only simple structures but any complex ones are taken 
into consideration in our new calculation. 
 
 
 
 
 
 

Above structures are observed as excited states in our RMF 
calculation for symmetric (𝑌𝑝 = 0.5) nuclear matter. 

Typical pasta structures are found to be the ground states. 

Mixture of 
droplet & rod 

Mixture of 
slab & tube 

Dumbbell Network 

• Crystalline structures can be discussed. 
We have found that fcc lattice appears  
at higher densities of droplet phase. 

bcc,  𝜌 = 0.01 fm−3 fcc,  𝜌 = 0.03 fm−3 



Shear 

Deformation  =  
translation
or rotation

 +   
isotropic

compression
 + 𝐬𝐡𝐞𝐚𝐫 

D1:  𝑢𝑥𝑥 =
2𝜖−𝜖2

1−𝜖 2 , 𝑢𝑦𝑦 = 𝑢𝑧𝑧 = −𝜖 

D2:  D1 with 𝑥 → 𝑦, 𝑦 → 𝑧, 𝑧 → 𝑥 

D3:  D1 with 𝑥 → 𝑧, 𝑦 → 𝑥, 𝑧 → y 

D4:  𝑢𝑥𝑥 =
𝜖2

(1−𝜖)2
,  𝑢𝑦𝑧= 𝑢𝑧𝑦 = 𝜖 

D5: D4 with 𝑥 → 𝑦, 𝑦 → 𝑧, 𝑧 → 𝑥 

D6: D4 with 𝑥 → 𝑧, 𝑦 → 𝑥, 𝑧 → y 

[Ogata etal, 
PRA42(1990)4867] 

Nothing essential 

𝑟𝑖 → 𝑟𝑘𝛿𝑖𝑘𝑢  
(𝑟 → 𝑟 𝑢) 

6 kinds of shear deformations 

(D4) (D1) 

𝑃 = (1 +
2𝜖−𝜖2

1−𝜖 2 , 1 − 𝜖, 1 − 𝜖) 𝑃 = (1 +
𝜖2

1−𝜖2
, 1 + 𝜖, 1 + 𝜖) 

𝜖 : infinitesimal 
𝑟𝑖 → (𝛿𝑖𝑘 + 𝑢𝑖𝑘) 𝑟𝑘 



Calculation of shear modulus 
How rigid against shear deformation 

increment of free energy 

𝛿𝐹 =
1

2
𝜆𝑢𝑖𝑖

2 + 𝝁 𝑢𝑖𝑘𝑢𝑖𝑘 

 𝜆:volume elasticity 

𝝁: shear modulus 
 

How to calculate the shear modulus in our framework 
 

• Prepare a ground state  
 

• Give a small shear deformation without compression 
 

• Calculate the curvature of the energy change against a 
shear deformation. 
 

• Average the curvature among different shears 



Deformed periodic boundary condition (DPBC) 

F(x ± Lx, y)  = F(x, y),  
F(x, y ± Ly) = F(x, y) 

F(x ± Lx, y)  = F(x, y), 
F(x, y ± Ly) = F(x ∓ δx, y) 

Ground state under DPBC  

𝜖 =
𝛿𝑥

𝐿𝑥
 

How to give a shear deformation 



• Below 0.02 fm−3, we get shear modulus slightly smaller 
than the conventional study.  screening effects. 

• Above 0.02 fm−3, our value is larger. finite size effects.  

Preliminary result for droplet 



Summary 

RMF + Thomas-Fermi calculation for neutron-star matter 
Inhomogeneous structures appear below saturation density 
 
Shear modulus for droplets calculated by deformed  periodic boundary conditions 
  screening effects and finite-size effects  
 

Future plan: 
 
Comparison of shear moduli for bcc and fcc lattices and rod  




