Core-Collapse Supernovae Recent Progress in Theory & Gravitational-Wave Emission

Christian D. Ott

TAPIR

California Institute of Technology

Collaborators:

Sarah Gossan, Hannah Klion,
Alex DeMaio, Mathieu Renzo, Sherwood Richers,
Evan O'Connor (CITA -> Hubble Fellow at NCSU),
Ernazar Abdikamalov, Roland Haas, Philipp Mösta,
Christian Reisswig, Jeremiah Murphy,
and Erik Schnetter

Overview

- Update on Core-Collapse Supernova Theory
- What's going on with Advanced LIGO/Virgo? (for the LIGO Scientific Collaboration & Virgo)
- Gravitational Waves from Core-Collapse Supernovae

Reminder: Core Collapse Basics

Reviews:

Bethe'90

Janka+'12

Nuclear equation of state (EOS) stiffens at nuclear density.

Inner core (~0.5 M_{Sun})
-> protoneutron star core.
Shock wave formed.

Outer core accretes onto shock & protoneutron star with $O(1) M_{\odot}/s$.

-> Shock stalls at ~100 km, must be "revived" to drive explosion.

Reminder: Core Collapse Basics

Neutrino Mechanism

Bethe & Wilson 85; also see: Janka 01, +07, 12

Cooling:

$$Q_{\nu}^{-} \propto T^{6}$$

Heating via charged-current absorption:

$$u_e + n \rightarrow p + e^-$$
 $\bar{\nu}_e + p \rightarrow n + e^+$

$$Q_{
u}^{+} \propto \left\langle rac{1}{{
m F}_{
u}}
ight
angle L_{
u} r^{-2} \langle \epsilon_{
u}^2
angle$$
 $ightharpoonup^{-60}$

Neutrino Mechanism: Status

[100 km]

- Multi-D dynamics: convection, standing accretion shock instability (SASI) crucial.
- Detailed 2D (axisymmetric) simulations show explosions:

B. Müller+ 12ab, 13, 14 Bruenn+ 13 Takiwaki+14

But: no 2D explosions in Dolence+14 (but different EOS, Newt. grav.)

What about 3D?

The Frontier: 3D Core-Collapse Supernovae

- Is the neutrino mechanism robust in 3D?
- 1D -> 2D: neutrino heating more efficient, some models explode.
- 2D -> 3D: (1) Character of turbulence changes; energy cascades to small scales (large scales in 2D).
 - (2) Additional degree of freedom: nonaxisymmetric flow.
- Some "early" work: Fryer & Warren 02, 04 (SPH)
- Lots of new work: Fernandez 10, Nordhaus+10, Takiwaki+11, Burrows+12, Murphy+13, Dolence+13, Hanke+12,13, Kuroda+12, Ott+13, Couch 13, Takiwaki+13, Couch & Ott 13, Couch & O'Connor 13
- Approximations currently made:
 (1) Gravity (2) Neutrinos (3) Resolution

-6.18 ms

Ott+2013
Caltech,
full GR,
parameterized
Neutrino heating

Results of current 3D Simulations

Does 3D help the explosion?

Yes:

Explosions start earlier in 3D.

Nordhaus+10, Burrows+12, Dolence+13, Handy+13, Takiwaki+12

Results of current 3D Simulations

Does 3D help the explosion?

-> Hanke+12,13, Couch & O'Connor 13: Turbulent cascade

Turbulent Cascade: 2D vs. 3D

Couch & O'Connor 13

see also: Dolence+13, Hanke+12,13, Abdikamalov+'14 (in prep.)

Summary of 3D Simulations:

- Explosions:
 low-mode asymmetry
 -> pulsar kicks, SN remnants
- Downsides of current 3D models: Either underresolved or parameterized (or both).
- 3D may make it harder to explode!

What else could be missing?

Perhaps: Multi-D Stellar Evolution

All available stellar models are spherically symmetric!

(But stars are not perfectly spherical!)

Arnett & Meakin 2011

- Late-stage oxygen burning very violent
 - -> may lead to large-scale deviations from sphericity in O/Si layer.
- Could this have an effect on the explosion mechanism?

Precollapse Asphericity

Couch & Ott 13, ApJL

- 3D simulations using FLASH with parameterized neutrino heating (Ott+13).
- Periodic velocity perturbations up to Mach 0.2, motivated by multi-D stellar models.

Couch & Ott 13, ApJL

unperturbed

850 km

850 km

perturbed

The Role of Perturbations

Couch & Ott'13, ApJL

- Perturbations can be important
 - -> Larger perturbations -> stronger convection.
 - -> 3D stellar evolution must tell us what they are!
 - -> Must study sensitivity to magnitude/type of perturbation.

More Problems: Hypernovae & GRBs

Massive Star -8 - 130 M BSG "WR" Core Collapse Engine Inormal Normal Normal

- 11 long GRB core-collapse supernova associations.
- All GRB-SNe are of type "Ic-bl": no H, He in spectra, relativistic velocities (bl: "broad lines"), hypernova energies (~10⁵² erg).
- Neutrino mechanism is inefficient ($\eta \sim 10\%$); can't deliver a hypernova.
- What mechanism drives these extreme explosions?

Magnetorotational Mechanism

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70, Burrows+ '07, Takiwaki & Kotake '11, Winteler+ 12]

Rapid Rotation + B-field amplification (need magnetorotational instability [MRI]; difficult to resolve, but see, e.g, Siegel+13)

2D: Energetic bipolar explosions.

Results in ms-period proto-magnetar. GRB connection?

Caveat: Need high core spin; only in very few progenitor stars?

C. D. Ott @ Florence, 2014/03/27

Burrows+'07

seed field)

(10¹¹ G

3D Dynamics of Magnetorotational Explosions

New, full 3D GR simulations. Mösta et al. 2014, ApJL accepted. Initial configuration as in Takiwaki+11, 10¹² G seed field.

C. D. Ott @ Florence, 2014/03/27

Octant Symmetry (no odd modes)

Full 3D

$$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$$

Mösta et al. 2014

Some Other Candidate Mechanisms

Magneto-viscous/sonic Mechanism Suzuki+'08, Obergaulinger+'11]

[Akiyama+'03, Thompson+'05,

- -> viscous heating by the magnetorotational instability [MRI];
- -> and/or dissipation of Alfven waves.

Phase-Transition Induced Mechanism [e.g., Sagert +'09]

- -> hadron-quark phase transition: second "collapse" and bounce of protoneutron star + shock -> explosion;
- -> requires soft equation of state, now disfavored.

Acoustic Mechanism [e.g., Burrows+'06,'07, Ott+'06, Weinberg&Quataert'08]

- -> excitation of protoneutron star pulsations, damping via sound waves that become shocks & dissipate -> explosion;
- -> disfavored: non-linear mode couplings limit amplitudes, amplification seen only by one group.

Observing the CCSN Mechanism

Probing the "Supernova Engine"

- Gravitational Waves
- Neutrinos (<- topic of another talk...),

EM waves (optical/UV/X/Gamma):

secondary information,

late-time probes of engine.

Red Supergiant
Betelgeuse
D ~200 pc

Gravitational Wave (GW) Refresher

• Emission: Accelerated quadrupole bulk mass-energy motion.

Quadrupole approximation

$$h_{jk}^{TT}(t, \vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk} (t - \frac{|\vec{x}|}{c})\right]^{TT} \frac{G}{c^4} \approx 10^{-49} \,\mathrm{s}^2 \,\mathrm{g}^{-1} \,\mathrm{cm}^{-1}$$

$$10 \,\mathrm{kpc} \approx 3 \times 10^{22} \,\mathrm{cm}$$

-> must measure relative displacements of 10⁻²²

Measure changes in separations of test masses with laser interferometry.

Gravitational Wave Astronomy International Network of LIGOs

First Generation: 2000 - 2010 - Haven't seen anything (yet)

Joint LIGO/GEO + Virgo data in most recent science runs.

- Sky coverage - Duty cycle

What's going on with LIGO/Virgo?

- Upgrades to existing intoferometers
 -> LIGO & Virgo are currently offline. "Astrowatch" by GEO600.
- 10 x sensitivity -> 1000 x probed volume. Expect $\mathcal{O}(10)$ events / year.
- New interferometers: LIGO India (2020+), KAGRA (Japan, 2016+)

- ~April 2014: Installation complete.
 ~Fall 2015: S7 science run (1 month)
- ~Summer 2014: Meet NSF detector-lock criterion.

Expected Detection Rates: Coalescence(at full sensitivity)

Summarized in Abadie et al., CQG 27, 173001 (2010) :

Table 5. Detection rates for compact binary coalescence sources.

IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{\rm re}~{\rm yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$	$\dot{N}_{\rm max}~{\rm yr}^{-1}$
Initial	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			$10^{-4 d}$	$10^{-3}\mathrm{e}$
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300^{c}
	IMBH-IMBH			0.1^d	1 ^e

Warning: Population synthesis!

"Realistic" (=best-guess) event rates per year with advanced detectors later this decade

Expected Sensitivity

arXiv:1304.0670 Advanced LIGO

Adv. Virgo on similar schedule, shifted by 1-2 years.

The Advanced GW Detector Network: 2020+

Gravitational-Waves from Core-Collapse Supernovae

Recent reviews: Ott 09, Kotake 11, Fryer & New 11

Need:

$$h_{jk}^{TT}(t,\vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk} \left(t - \frac{|\vec{x}|}{c}\right)\right]^{TT} \longrightarrow$$

accelerated aspherical (quadrupolar) mass-energy motions

Candidate Emission Processes:

- Turbulent convection/SASI
- Rotating collapse & bounce
- 3D MHD/HD instabilities
- Aspherical mass-energy outflows

GWs from Convection & Standing Accretion Shock Instability

Recent work: Murphy+09, Kotake+09, 11, Yakunin+10, E. Müller+12, B.Müller+13

C. D. Ott @ Florence, 2014/03/27

Time-Frequency Analysis of GWs

Murphy, Ott, Burrows 09, see also B. Müller+13

Detectability?

Recent work: Dimmelmeier+08, Scheidegger+10, Ott+12, Abdikamalov+13

Recent work: Dimmelmeier+08, Scheidegger+10, Ott+12, Abdikamalov+13

Rapid rotation:

Oblate deformation of the inner core

- Axisymmetric: ONLY h₊
- Simplest GW emission process:
 Rotation + mass of the inner
 core + gravity + stiffening of
 nuclear EOS
- Strong signals for rapid rotation (-> millisecond proto-NS).

Recent work: Dimmelmeier+08, Scheidegger+10, Ott+12, Abdikamalov+13

Rapid rotation:

Oblate deformation of the inner core

- Axisymmetric: ONLY h.
- Simplest GW emission process: Rotation + mass of the inner core + gravity + stiffening of nuclear EOS
- Strong signals for rapid rotation (-> millisecond proto-NS).

Can we observe these waves?

Ott+ 12, PRD

Gravitational Waves $E_{GW} \lesssim 10^{-8} M_{\odot} c^2$

-> Throughout Milky Way with aLIGO

f [Hz]

Abdikamalov, Gossan, DeMaio, Ott, arXiv:1311.3678

Simple signal features:

Measure for "total rotation" of the inner core:

$$\beta = \frac{T}{|W|}$$

Closely related to inner core angular momentum

A1(most) – A5(least) differential rotation.

Measuring Inner Core Angular Momentum

Abdikamalov, Gossan, DeMaio, Ott, arXiv:1311.3678

C. D. Ott @ Florence, 2014/03/27

Matched-filtering analysis.

Unknown signal injected into simulated detector noise.

Can measure inner core angular momentum with < 30% error!

Summary

- We are still not sure how precisely core-collapse supernovae explode.
- Multi-D neutrino mechanism is the best bet.
 3D presupernova structure important (?).
- 3D dynamics breaks 2D MHD-driven jets.
- The next galactic core-collapse supernova has already exploded.

(But its GWs/neutrinos/EM waves won't arrive until 2015+ [-> advanced LIGO].)

 Gravitational waves and neutrinos probe the supernova dynamics and progenitor star properties.

