

The glitch activity of the Crab pulsar

Cristóbal Espinoza Instituto de Astrofísica, PUC, Chile

Danai Antonopoulou¹ - Andrew Lyne² Ben Stappers² - Anna Watts¹ C. A. Jordan² - F. Graham-Smith²

PONTIFICIA UNIVERSIDAD Católica DE Chile

¹Jodrell Bank Centre for Astrophysics, UoM.

²Astronomical Institute Anton Pannekoek, UvA. Wednesday, 26 March, 14 The structure and signals of neutron stars - Florence

Glitches

Occasional spin-up events interrupting the rotation.

Observed sizes cover ~5 decades $10^{-3} \leq \Delta \nu \leq 100 \,\mu {\rm Hz}$

Common to all Neutron Stars

Glitch activity proportional to spin-down rate.

In general, radiatively quiet and therefore associated to the interior of NSs.

Glitches

Commonly followed by a <u>negative</u> change in spin-down rate.

What can produce a glitch?

- Crust rearrangements; cooling, re-shape via slowdown. (Baym et al. 1969)
- Rapid angular momentum transfer from internal superfluid to outer Crust; result of halted vortex migration. (Anderson & Itoh 1975; Alpar et al. 1984; many many others)
- Magnetic field stresses on the crust driven by vortex migration. (Ruderman et al. 1998)

M. Ruderman (2009)

internal or crust process

Outline

- ▶ The Crab pulsar.
- Three main glitchy aspects:
 - Sizes (detection limits)
 - Recoveries (new feature!)
 - Waiting times (episode)
- Conclusions / Summary.

The Crab pulsar

Born during the AD 1054 supernova (i.e. 959 yr old) Normal B-field but Energetic (high Edot) Pulsations detected from low freq. radio up to VHE

24 glitches detected in 45 years

Cumulative size distributions for 6 PSRs:

<u>Crab</u>: middle size glitches; power law.

In general, (small)glitch detection is an uncertain process.

Small glitches can be confused with timing noise.

Limits on glitch detection

Espinoza+2014

The Crab pulsar Jodrell Bank Observatory

 Rotation monitored almost daily during
 29 yr (42-ft telescope)

▶ 20 glitches in that period.

There are no other glitches reported: Wong+2001; Wang+2012; Espinoza+2011

Developed automatic method to detect and measure every signature resembling a glitch

And the same was done for signatures with the exact opposite signs ("anti-glitches")

More details in Espinoza, Antonopoulou, Stappers, Watts & Lyne (2014).

...found 381 glitch candidates (GCs) Most candidates have and 383 anti-glitch (AGCs) candidates $\Delta v < 10.031 \mu Hz$

Espinoza+2014

FACTS:

• Compared to previously known glitches, all candidates occupy a different place in the $|\Delta \nu| - |\Delta \dot{\nu}|$ plane.

► There are no "anti-glitches" above 0.03 µHz.

Neither a power-law nor a lognormal dist. can describe the GCs + glitches together
(KS prob. < 0.01%).
GCs and AGCs belong to same ∆v distribution (96% prob.).

Espinoza+2014

Interpretations:

1) GCs and AGCs are part of the timing noise and there are no glitches below 0.05μ Hz (or there are very few).

10000

 GCs and AGCs are generated by the same mechanism that produces glitches. This mechanism fails to produce "anti-glitches" larger than |0.03| μHz.

In any case, there is a break in the mechanism and it happens at freq. steps considerably larger than what could be expected by any model.

Glitch recoveries:

Persistent steps in spin-down rate

$$\dot{\nu}_{\rm g}(t) = \Delta \dot{\nu}_{\rm p} + \Delta \dot{\nu}_{\rm d} e^{-(t-t_{\rm g})/\tau_{\rm d}}$$

The persistent steps in the Crab pulsar:

Reduce the effects of the slowdown rate by 6%.

Decrease the global braking index from 2.5 to 2.34 (i.e. increase of 0.2 on the slope of its movement on the P-Pdot diagram).

Lyne+2014 (submitted to MNRAS)

Waiting times

Not completely random: there is interval of 10 years containing 14 of the 24 glitches.

At least for the Crab pulsar:

- There aren't as many small glitches as it was expected (minimum size of ~0.05 µHz), implying a break in the mechanism.
- There is second exponential increase in spin-down rate, after glitches, decaying towards persistent step.
- Persistent steps correlate ~linearly with frequency step. Spin-down steps are also correlated.
- There is a 10-yr episode of increased glitch activity.

Glitches

Large glitches can have a significant effect on the longterm spin evolution.

Braking indices
Persistent effects

Glitches & timing noise

Wednesday, 26 March, 14

Episode coincides with period of low braking index.