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• Introduction 

– NAFF  

– perturbative theory of betatron motion 

– SVD fit of lattice parameters 

 

• DIAMOND Spectral Lines Analysis 

– Linear Model 

•  – beating 

• linear coupling 

– Nonlinear Model 



 

              

Real Lattice to Model Comparison 

Accelerator  

Model 

• Closed Orbit Response Matrix (LOCO–like)  

• Frequency Map Analysis 

• Frequency Analysis of Betatron Motion (resonant driving terms) 
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Accelerator  



 

              

Frequency Analysis of Betatron Motion   

and Lattice Model Reconstruction (1) 

Accelerator Model 

• tracking data at all BPMs 

• spectral lines from model (NAFF) 

• build a vector of Fourier coefficients 
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• beam data at all BPMs 

• spectral lines from BPMs signals (NAFF) 

• build a vector of Fourier coefficients 

Accelerator 
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Frequency Analysis of Betatron Motion   

and Lattice Model Reconstruction (2) 
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Least Square Fit (SVD) of accelerator parameters θ 

to minimize the distance χ2 of the two Fourier coefficients vectors 

MODEL → TRACKING → NAFF →  

Define the vector of Fourier Coefficients – Define the parameters to be fitted 

 SVD → CALIBRATED MODEL 

MA • Compute the “Sensitivity Matrix” M 

• Use SVD to invert the matrix M 

• Get the fitted parameters AUWV T   )( 1
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Main parameters: 

100 MeV Linac 

3 GeV Booster (158.4 m) 

3 GeV Storage Ring (561.6 m) 

 24 cell DBA lattice 

 2 + 1 SC RF cavities 

 18 straight for ID (5 m) 

 6 long straights (8 m) 

 

Commissioning end 2006 

DIAMOND Layout 



 

              

A comparison on tracking between MAD and AT:  

FMA and DA for DIAMOND 

• MAD provided tracking data  

• FMA built with Mathematica: 

H.L. Owen and J.K. Jones,        

AP–SR–REP–072, (2002) 

• AT provided tracking data  

• FMA built with MATLAB 

FMA workshop, Orsay, LURE, 1st and 2nd April 2004 



 

              

NAFF algorithm – J. Laskar (1988) 

(Numerical Analysis of Fundamental Frequencies) 

Given the quasi–periodic time series of the particle orbit (x(n); px(n)),  

• Find the main lines with the previous technique for tune measurement 

 1 frequency, a1 amplitude, 1 phase; 

• build the harmonic time series 

• subtract form the original signal 

• analyze again the new signal z(n) – z1(n) obtained 
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Measurement of Resonant driving terms of non linear resonances 
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The decomposition allows the 
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Frequency Analysis of Non Linear Betatron Motion 
A.Ando (1984), J. Bengtsson (1988), R.Bartolini-F. Schmidt (1998) 
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Each resonance driving term sjklm contributes to the Fourier coefficient of a well 

precise spectral line  

can be compared to the perturbative expansion of the non linear betatron motion 
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The quasi periodic decomposition of the orbit 

FMA workshop, Orsay, LURE, 1st and 2nd April 2004 



 

              

Spectral Lines for DIAMOND low emittance lattice  

(.2 mrad kick in both planes) 

Spectral Lines detected with 

NAFF algorithm 

e.g. Horizontal: 

• (1, 0) 1.10 10–3  horizontal tune 

• (0, 2) 1.04 10–6 Qx – 2 Qz 

• (–3, 0) 2.21 10–7 4 Qx 

• (–1, 2) 1.31 10–7 2 Qx + 2 Qz 

• (–2, 0) 9.90 10–8 3 Qx 

• (–1, 4) 2.08 10–8 2 Qx + 4 Qz 

ASTeC Seminar, Daresbury, 11 February 2004 



 

              

Amplitude of Spectral Lines for low emittance DIAMOND 

lattice computed at all the BPMs 

• The amplitude of the tune spectral line replicates the  functions 

• The amplitude of the (– 2, 0) show that third order resonance is 

well compensated within one superperiod. Some residual is left 

every two cells (5/2 phase advance) 

Main spectral line (Tune Qx)  (-2, 0)  spectral line: resonance driving term h3000 (3Qx = p) at all BPMs 

FMA workshop, Orsay, LURE, 1st and 2nd April 2004 



 

              

Example: DIAMOND with random misalignments (100 m r.m.s ) 

in chromatic sextupoles to generate linear coupling 

Tune Z in horizontal motion Tune X in vertical motion 

0.1 mrad kick in both planes 
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The coupled linear motion in each plane can be 

written in terms of the coupling matrix 
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e.g. for the horizontal motion 

a3 and a4 depend linearly on cij 

• two frequencies (the H tune and V tune) 

• no detuning with amplitude 
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(0,1) spectral line for low emittance DIAMOND lattice computed at all 

the BPMs (V misalignment errors added to chromatic sextupoles) 

The amplitude of the (0, 1) spectral line replicates well the s dependence of the difference 

resonance Qx – Qz driving term 

The resonance driving term h1001 

contributes to the (0, 1) spectral line in 

horizontal motion 
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DIAMOND Spectral Lines Analysis 

• Horizontal Misalignment of sextupoles (β – beating) 

• Vertical Misalignment of sextupoles (linear coupling) 

• Gradient errors in sextupoles (non linear resonances) 

FMA workshop, Orsay, LURE, 1st and 2nd April 2004 



 

              

Horizontal misalignment of a set of 24 sextupoles 

with 100 m rms ( - beating correction) 

The generated normal quadrupole components introduce a β - beating. 

• we build the vector of Fourier coefficients of the horizontal and vertical tune line 

• we use the horizontal misalignments as fit parameters 

H tune line 

(no misalignments) 

V tune line  

(no misalignments) 

H tune line  

with misalignments 

V tune line  

with misalignments 



 

              

SVD on sextupoles horizontal misalignments 

We build the vector  )1,0()1,0(
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containing the amplitude of the tune lines in the two planes at all BPMs 

We minimize the sum 

Example of SVD principal values 2 as a function of the iteration number 



 

              

Fitted values for the 24 horizontal sextupole 

misalignments obtained from the SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

misalignments 

with  

misalignments 

with  

misalignments 

and corrections 



 

              

Fitted values for the 72 horizontal sextupole 

misalignments obtained from the SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

misalignments 

with  

misalignments 

with  

misalignments 

and corrections 



 

              

Vertical misalignment of a set of 24 sextupoles with 

100 m rms (linear coupling correction)  

The generated skew quadrupole components introduce a linear coupling. 

• we build the vector of Fourier coefficients of the (0, 1) line in the H plane 

• we use the vertical misalignments as fit parameters 

(0,1) line amplitude 

in H plane 

(no misalignments) 

(0,1) line phase in H 

plane 

(no misalignments) 

(0,1) line amplitude 

in H plane 

with misalignments 

(0,1) line phase in H 

plane 

with misalignments 



 

              

SVD on sextupole vertical misalignments 

We build the vector  )1,0()1,0(
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containing the amplitude and phase of the (0, 1) line in the H planes at all BPMs 

We minimize the sum 

Example of SVD principal values 2 as a function of the iteration number 



 

              

Fitted values for the 24 vertical sextupole 

misalignments obtained from SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

misalignments 

with  

misalignments 

with  

misalignments 

and corrections 



 

              

Fitted values for the 72 vertical sextupole 

misalignments obtained from SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

misalignments 

with  

misalignments 

with  

misalignments 

and corrections 



 

              

Sextupoles gradient errors applied to 24 sextupoles 

(dK2/K2 = 5%) 

The sextupole gradient errors spoil the compensation of the third order 

resonances, e.g 3Qx = p and Qx – 2Qz = p 

• we build the vector of Fourier coefficients of the H(-2,0) and H(0,2) line 

• we use the errors gradients as fit parameters 

(0,2) line amplitude 

in H plane 

(no gradient errors) 

(0,2) line amplitude 

in H plane 

with gradient errors 

(-2,0) line amplitude 

in H plane 

(no gradient errors) 

(-2,0) line amplitude 

in H plane 

with gradient errors 



 

              

SVD on sextupole gradient errors 
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containing the amplitudes at all BPMs 

• the (–2, 0) line in the H plane related to h3000 

• the (0, 2) line in the H plane related to h1002 

We minimize the sum 

2 as a function of the iteration number 



 

              

Fitted values for the 24 sextupoles gradients errors 

obtained from SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

gradient errors 

with  

gradient errors 

with gradient 

errors and 

corrections 



 

              

Fitted values for the 72 sextupoles gradients errors 

obtained from SVD 

Blu dots = assigned misalignments 

Red dots = reconstructed misalignments 

no  

gradient errors 

with  

gradient errors 

with gradient 

errors and 

corrections 



 

              

Can we use the spectral lines to recover the LINEAR and NON LINEAR machine 

model with a Least Square method? 

Conclusions and Ongoing Work 

If decoherence is a problem it can be tackled with AC dipole techniques, many more 

spectral lines have to be identified… 

FMA workshop, Orsay, LURE, 1st and 2nd April 2004 

• the SVD solution for fit is not unique 

• select threshold for principal values helps 

• use both amplitude and phase information 

Further studies on more complete models are ongoing 


