Studies on Lattice Calibration With Frequency Analysis of Betatron Motion

R. Bartolini DIAMOND Light Source Ltd

- Introduction
 - NAFF
 - perturbative theory of betatron motion
 - SVD fit of lattice parameters
- DIAMOND Spectral Lines Analysis
 - Linear Model
 - β beating
 - linear coupling
 - Nonlinear Model

Real Lattice to Model Comparison

- Closed Orbit Response Matrix (LOCO-like)
- Frequency Map Analysis
- Frequency Analysis of Betatron Motion (resonant driving terms)

Frequency Analysis of Betatron Motion and Lattice Model Reconstruction (1)

$$\chi^{2} = \sum_{k} \left(A_{Model}(j) - A_{Measured}(j) \right)^{2}$$

Frequency Analysis of Betatron Motion and Lattice Model Reconstruction (2)

Least Square Fit (SVD) of accelerator parameters θ

to minimize the distance χ^2 of the two Fourier coefficients vectors

- Compute the "Sensitivity Matrix" M
- Use SVD to invert the matrix M
- Get the fitted parameters

 $\Delta \overline{A} = M\overline{\theta}$ $M = U^T W V$ $\overline{\theta} = (V^T W^{-1} U) \Delta \overline{A}$

 $MODEL \rightarrow TRACKING \rightarrow NAFF \rightarrow$

Define the vector of Fourier Coefficients – Define the parameters to be fitted

SVD → CALIBRATED MODEL

DIAMOND Layout

Main parameters:

100 MeV Linac

3 GeV Booster (158.4 m)

3 GeV Storage Ring (561.6 m)

24 cell DBA lattice

2 + 1 SC RF cavities

18 straight for ID (5 m)

6 long straights (8 m)

Commissioning end 2006

A comparison on tracking between MAD and AT: FMA and DA for DIAMOND

NAFF algorithm – J. Laskar (1988) (Numerical Analysis of Fundamental Frequencies)

Given the quasi-periodic time series of the particle orbit $(x(n); p_x(n))$,

 \rightarrow • Find the main lines with the previous technique for tune measurement

 \Rightarrow v₁ frequency, a₁ amplitude, ϕ_1 phase;

• build the harmonic time series

 $z_1(n) = a_1 e^{i\phi_1} e^{2\pi i v_1 n}$

• subtract form the original signal

• analyze again the new signal $z(n) - z_1(n)$ obtained •—

The decomposition
$$z(n) = \sum_{k=1}^{n} a_k e^{i\phi_k} e^{2\pi i v_k n}$$
 allows the

Measurement of Resonant driving terms of non linear resonances

Frequency Analysis of Non Linear Betatron Motion A.Ando (1984), J. Bengtsson (1988), R.Bartolini-F. Schmidt (1998)

The quasi periodic decomposition of the orbit

$$x(n) - ip_x(n) = \sum_{k=1}^n c_k e^{2\pi i v_k n}$$
 $c_k = a_k e^{i\phi_k}$

can be compared to the perturbative expansion of the non linear betatron motion

$$x(n) - ip_{x}(n) = \sqrt{2I_{x}}e^{i(2\pi Q_{x}n + \psi_{0})} + -2i\sum_{jklm} js_{jklm}(2I_{x})^{\frac{j+k-1}{2}}(2I_{y})^{\frac{l+m}{2}}e^{i\left[(1-j+k)(2\pi Q_{x}n + \psi_{x0}) + (m-l)(2\pi Q_{y}n + \psi_{y0})\right]}$$

Each resonance driving term s_{jklm} contributes to the Fourier coefficient of a well precise spectral line

$$v(s_{jklm}) = (1 - j + k)Q_x + (m - l)Q_y$$

Spectral Lines for DIAMOND low emittance lattice (.2 mrad kick in both planes)

ASTeC Seminar, Daresbury, 11 February 2004

Amplitude of Spectral Lines for low emittance DIAMOND lattice computed at all the BPMs

FMA workshop, Orsay, LURE, 1st and 2nd April 2004

Example: DIAMOND with random misalignments (100 μ m r.m.s) in chromatic sextupoles to generate linear coupling

The coupled linear motion in each plane can be written in terms of the coupling matrix

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

e.g. for the horizontal motion

$$\zeta_{x} = x - ip_{x} = a_{1}e^{i(\phi_{u} + \delta_{u})} + a_{2}e^{-i(\phi_{u} + \delta_{u})} + a_{3}e^{i(\phi_{v} + \delta_{v})} + a_{4}e^{-i(\phi_{v} + \delta_{v})}$$

 $a_3 \mbox{ and } a_4 \mbox{ depend linearly on } c_{ij}$

- two frequencies (the H tune and V tune)
- no detuning with amplitude

(0,1) spectral line for low emittance DIAMOND lattice computed at all the BPMs (V misalignment errors added to chromatic sextupoles)

The amplitude of the (0, 1) spectral line replicates well the s dependence of the difference resonance $Q_x - Q_z$ driving term

DIAMOND Spectral Lines Analysis

- Horizontal Misalignment of sextupoles (β beating)
- Vertical Misalignment of sextupoles (linear coupling)
- Gradient errors in sextupoles (non linear resonances)

Horizontal misalignment of a set of 24 sextupoles with 100 μ m rms (β - beating correction)

The generated normal quadrupole components introduce a β - beating.

• we build the vector of Fourier coefficients of the horizontal and vertical tune line

SVD on sextupoles horizontal misalignments

We build the vector $\overline{A} = (a_1^{H(1,0)} \dots a_{NBPM}^{H(1,0)} a_1^{V(0,1)} \dots a_{NBPM}^{V(0,1)})$ containing the amplitude of the tune lines in the two planes at all BPMs $\chi^{2} = \sum_{i} \left(A_{Model}(j) - A_{Measured}(j) \right)^{2}$ We minimize the sum 1.6 × 10 1.4 1.2 15 0.8 0.6 0.4 0.5 0.2 0 2.5 3.5 1.5 2 25 χ^2 as a function of the iteration number Example of SVD principal values

Fitted values for the 24 horizontal sextupole misalignments obtained from the SVD

diamond

Fitted values for the 72 horizontal sextupole misalignments obtained from the SVD

Vertical misalignment of a set of 24 sextupoles with 100 µm rms (linear coupling correction)

The generated skew quadrupole components introduce a linear coupling.

- we build the vector of Fourier coefficients of the (0, 1) line in the H plane
- we use the vertical misalignments as fit parameters

SVD on sextupole vertical misalignments

We build the vector $\overline{A} = (a_1^{H(0,1)} \dots a_{NBPM}^{H(0,1)} \phi_1^{H(0,1)} \dots \phi_{NBPM}^{H(0,1)})$ containing the amplitude and phase of the (0, 1) line in the H planes at all BPMs

Fitted values for the 24 vertical sextupole misalignments obtained from SVD

Fitted values for the 72 vertical sextupole misalignments obtained from SVD

Sextupoles gradient errors applied to 24 sextupoles $(dK_2/K_2 = 5\%)$

The sextupole gradient errors spoil the compensation of the third order resonances, e.g $3Q_x = p$ and $Q_x - 2Q_z = p$

- we build the vector of Fourier coefficients of the H(-2,0) and H(0,2) line
- we use the errors gradients as fit parameters

SVD on sextupole gradient errors

We build the vector $\overline{A} = (a_1^{H(-2,0)} \dots a_{NBPM}^{H(-2,0)} a_1^{H(0,2)} \dots a_{NBPM}^{H(0,2)})$

containing the amplitudes at all BPMs
the (-2, 0) line in the H plane related to h₃₀₀₀
the (0, 2) line in the H plane related to h₁₀₀₂

We minimize the sum

$$\chi^{2} = \sum_{j} \left(A_{Model}(j) - A_{Measured}(j) \right)^{2}$$

 χ^2 as a function of the iteration number

Fitted values for the 24 sextupoles gradients errors obtained from SVD

Fitted values for the 72 sextupoles gradients errors obtained from SVD

Can we use the spectral lines to recover the LINEAR and NON LINEAR machine model with a Least Square method?

- the SVD solution for fit is not unique
- select threshold for principal values helps
- use both amplitude and phase information

If decoherence is a problem it can be tackled with AC dipole techniques, many more spectral lines have to be identified...

Further studies on more complete models are ongoing

