

# Experimental frequency maps for the ESRF storage ring

### Yannis Papaphilippou

Orsay, April 1-2, 2004

## **Acknowledgments**



### Main Contributors:

- Laurent Farvacque, Eric Plouviez, Jean-Luc Revol (ESRF)
- Jacques Laskar (IMCEE-ASD), Charis Skokos (Ac.Athens)

### Many thanks to:

- Pascal Elleaume, Alain Panzarella, Thomas Peron, Annick Ropert, Kees Scheidt, Vincent Serrière, CTRM Operators (ESRF)
- Madhia Belgroune, Amor Nadgi, Laurent Nadolski (Soleil)
- Jean-Pierre Koutchouk, Frank Zimmermann (CERN)
- David Robin (ALS)
- Giovanni Rumolo (GSI)

## **Outline**



- A brief introduction to frequency map analysis
- First experimental frequency maps for the ESRF storage ring through the MTOUR system
  - Identification of resonance and correction
  - Phase advance measurements
- Limitations of the system and improvements
  - Tune-determination using multiple BPM
  - Frequency maps with a dedicated turn-by-turn BPM
  - Off-momentum frequency maps
- Frequency analysis of data with longitudinal excitation
  - Synchrotron tune and RF voltage calibration
  - Off-momentum optics functions' beating and chromaticity

# **Frequency Map Analysis**

#### Laskar A&A1988, Icarus1990



Quasi-periodic approximation through NAFF algorithm  $f_j'(t) = \sum_{k=1}^N a_{j,k} e^{i\omega_{j,k}t}$ 

of a complex phase space function  $f_j(t) = q_j(t) + ip_j(t)$  defined over  $t = \tau$ ,

for each degree of freedom  $\,j=1,\ldots,n\,$  with  $\,\omega_{j,k}=k_j\cdot\omega\,$  and  $\,a_{j,k}=A_{j,k}e^{i\phi_{j,k}}\,$ 

#### Advantages of NAFE:

a) Very accurate representation of the "signal"  $f_j(t)$  (if quasi-periodic) and thus of the amplitudes  $a_{j,k}$ b) Determination of frequency vector  $\boldsymbol{\omega} = 2\pi \boldsymbol{\nu} = 2\pi (\nu_1, \nu_2, \dots, \nu_n)$ with high precision  $\longrightarrow \frac{1}{\tau^4}$  for Hanning Filter Laskar NATO-ASI 1996

# Aspects of frequency map analysis





• Determination of resonance driving terms associated with amplitudes  $a_{j,k}$ Bengtsson PhD thesis CERN88-05



**Machine Division** 

# First Experimental Frequency Maps @



- Machine setup:
  - Injection of 10mA in 1/3 filling
  - Nominal tunes (36.44,14.39)
  - Chromaticity  $\xi_{x,y} = 0$  to limit decoherence
  - Corrections optimized @ 10 mA and nominal chromaticity
  - Timing at 10Hz
- Experimental procedure:
  - Apply synchronous transverse kicks with fast injection kicker and tune monitor shaker (automatic control)
  - Record turn-by-turn data for 252 turns from all the 214 BPMs with the MTOUR system (K.Scheidt)
  - Analyze the results off-line with MATLAB version of NAFF algorithm

#### Remarks:

- Maximum horizontal kick (where first losses occur) gives amplitude of 12mm (middle of the straight section)
- The vertical shaker was limited to an amplitude of 1mm (50% of aperture)
- MTOUR system is not a "turn-by-turn" acquisition (averaging is set to 32)
- Whole experiment was taking 4 hours!!!



## First experimental frequency map





- Tune-shift essentially coming from horizontal excursion of the beam
- 3 regions:
  - Small amplitudes (up to 8mm hor.amp.): regular motion
  - Medium amplitudes
     (between 8 and 10mm) :
     multiple high-order
     resonance crossing
     (especially fifth)
  - Large amplitudes

     (>10mm): regular motion
     up to the point where
     losses occur.

Machine Division

## **Comparison with tracking data**





 Losses are attributed to third order resonance crossing point (simulations by M.Belgroune. L.Nadolski and A.Ropert)

**Machine Division** 

# **Tune-shift with horizontal amplitude and tune precision**



- Tune error depends on number of analyzed turns and regularity of phase space
- For lowest amplitudes, error of the order of 10<sup>-5</sup>
- In most cases less than 10<sup>-4</sup> apart from area of instability
- For large amplitudes, very small amount of turns are available (less than 100)



Machine Division

## **Phase-space plots**





Machine Division



# 5<sup>th</sup> order resonance driving term



**Machine Division** 

**Theory Group** 

# 3<sup>rd</sup> order resonance driving terms and correction



- a(-2,0) spectral amplitude associated with (3,0) resonance
- Lattice tuned in the vicinity of this resonance
- Amplitude reduced when correction with sextupole correctors is applied



**Machine Division** 

**Theory Group** 

## **Phase advance measurements**





Machine Division

# Localization of quadrupole errors with phase advance modulation





Machine Division

# Phase advance derivative with amplitude





- Kick the beam in several horizontal amplitudes and record MTOUR measurements
- Determine the derivative of the phase advance with the kick amplitude with a linear fit
- Repeat the same measurement for different sextupole corrector currents
- Compute the difference of the phase advance derivative with and without sextupole excitation

# Horizontal phase advance derivative modulation





Machine Division

# Improving the experimental set-up and analysis





Machine Division

# **Tune determination using multiple BPM**

### with J.Laskar and Ch.Skokos





# **Experimental Frequency Maps with dedicated BPM**



- Machine setup:
  - Injection of 10mA in 1/3 filling
  - Nominal tunes (36.44,14.39)
  - Chromaticity  $\xi_{x,y} = 0$  to limit decoherence
  - Corrections optimized @ 10 mA and nominal chromaticity
  - Timing at 10Hz



- Experimental procedure:
  - Apply synchronous transverse kicks with fast injection kicker and tune monitor shaker (automatic control)
  - Record 64 samples of turn-byturn data in the dedicated ADAS BPM (E.Plouviez)
  - Analyze the results with MATLAB version of frequency analysis algorithm
  - Frequency map in a few minutes (less then 5 seconds per acquisition)
  - <u>Tests</u>:
    - -Find the samples with useful data
    - -Slight dependence of tune with signal current

#### Machine Division

# Frequency Maps with dedicated BPMprecision tests





Machine Division

# **Experimental frequency map for** different sextupole settings





Machine Division

Theory Group

0.44

## **Off-momentum frequency maps**





- Off-momentum frequency maps for 0 chromaticity (small vertical kicks)
- For positive momentum spread, distortion due to 5<sup>th</sup> order resonance seem to be weaker
- For momentum spreads +/- 1.5, appears the distortion due to coupling (or 4<sup>th</sup> order) resonance
- The dip of the dynamic aperture appears when crossing 8th order resonances
- The normal sextupole resonance limits the off-momentum dynamics aperture at -2.5%

#### **Machine Division**

# Frequency analysis of data with longitudinal excitation



- Apply a longitudinal kick with an RF phase shifter, synchronised with a transverse kick (J.L.Revol)
- Record turn-by-turn transverse data in all BPM with MTOUR system and in the dedicated ADAS BPM
- Possibility to record phase signal in the ADAS BPM



Machine Division

# **Synchrotron tune and dispersion**



 Normalised precision in synchrotron tune determination better than 10<sup>-3</sup>

Possibility to calibrate the RF Voltage (V.

- Measuring dispersion in one kick.
- Use the measurements to calibrate the phase kick



Machine Division

# **Off-momentum optics beating and chromaticity**



 Possibility to measure chromaticity by the phase of synchrotron side-bands The Fourier amplitude of the main peak can be used to measure the Measure 2<sup>nd</sup> order dispersion by amplitude of 2Q<sub>s</sub> beta beating around the ring (G.Rumolo and R.Tomàs) 6.4 6.2 0.02 0.015  $A_1$ 0.005  $A_{2s} = \frac{1}{4}\eta_1(s)\sigma_\delta^2 k_l^2$ 12 10 8 0.02 5.2  $3\int^{\frac{x}{10}^{-3}}$ Mean(A<sub>1</sub>) 0.015 0.01 4.8 2.5 12 2 4 6 8 10 14 4.6 -3 -2 0 2 k 0.1 $\sigma_{A_1}$ /Mean( $A_1$ ) mean A<sub>2v</sub>  $\psi_q - \psi_0 = -|k| \operatorname{arctan}$ 0.08 0.06 0.04 10 12 14 BPM # 5 10 15 BPM #

Machine Division

## **Conclusions - Perspectives**



- Frequency analysis reveals unknown feature of the ESRF storage ring non-linear dynamics, for the nominal working point
- Numerical simulations to compare and adjust the non-linear model of the machine with the observed behavior
  - Why skew sextupole and high order resonances are excited?
  - How can we correct?
- Repeat the whole procedure for all interesting working points
  - Now capable with fast frequency map measurement dedicated BPM
- Understand off-momentum dynamics (lifetime limitations)
  - Use longitudinal excitation to measure chromaticity and off-momentum optics beating
- Limitation of the frequency analysis: few number of turns (beam decoherence)
  - Method of computing the tune in a few turns by using all BPM
- Establish new correction procedure by using driving term minimisation
- All necessary ingredients are present in order to establish experimental frequency map analysis as a routine operation on-line tool