

Experimental set-up at E.S.R.F.

L. Farvacque

Experimental set-up

- Hardware
 - Kickers
 - Bpms
- Software
 - Data acquisition
 - processing

Horizontal beam kicker

• We use an injection kicker:

Pulse length	1 μs	
Repetition rate	10 Hz	
Deflection angle	> 2 mrad	
β _x	5 m	
Max. amplitude	10 mm *	;

Limited by beam lifetime

- Will impose 1/3 (at most) filling pattern for all measurements
- Sets the repetition rate for all others parts
- No power limitation
- Flat top

Vertical beam kickers

• Tune monitor shaker

Pulse length	1 μs
Repetition rate	Up to 100 Hz
Deflection angle	.1 mrad
β _z	35 m
Max. amplitude	3.5 mm

• New dedicated kicker

Pulse length	1 μs
Repetition rate	10 Hz
Deflection angle	.6 mrad
β _z	35 m
Max. amplitude	7 mm *

* Limited by beam lifetime

Longitudinal kicker

- Phase shifter at the output of the RF master source
- Very large kicks are possible
- No calibration
 - Needs to be calibrated with beam

ESRF

Standard BPM system

- "Pseudo" turn-by-turn BPM system:
 - Multiplexed system: the 4 electrodes are read on different kicks
 - Data are averaged over many kicks (typically 32 to 256)
- Good linearity thanks to the processing
- Good resolution: \approx 1 μ m
- Large number of BPMs read simultaneously
- Slow system: ≈ 90s / point
 - Needs a sufficient lifetime

Turn-by-turn BPM readings

Decoherence due to

- Chromaticity: work with 0 chromaticity
- Head-tail damping: work at low intensity
- Tune shift with amplitude unavoidable

Phase-space plots

L. Farvacque - E.S.R.F.

Dedicated BPM system

Goal

- Much faster reading
- A true single-shot system will allow to go closer to the limit of the aperture (no lifetime concern)
- Solution
 - Analog combination of electrodes
 - Calibration, drifts are not critical
 - The rather bad linearity is not penalizing for frequency analysis
 - A single block is enough
 - Location in high β_z and low β_x to make the best use of the linear region

"ADAS" BPM horizontal

L. Farvacque - E.S.R.F.

11

"ADAS" BPM vertical (shaker)

L. Farvacque - E.S.R.F.

12

Future BPM

- Processing based on FPGA
 - Excellent compensation of non-linearities
 - High speed
- Wide linear range: 8 buttons
- A few dedicated BPM blocks
 - Blocks are installed
 - Processing currently being developed

BPM comparison

Standard BPM

- Resolution 1 μm
- Calibrated
- Linear in 10x10 mm²
- 90 s / measurement
- 214 available blocks
 - Averaging
 - Possibility to process all BPMs together

"ADAS" BPM

- Resolution 2.5 μm
- No calibration
- Limited linearity
- 1 s / measurement
- Single block
- 20 samples / turn
 - Averaging
 - Evolution along the bunch train

Software

Matlab used for

- Acquisition sequence
 - K_x, K_z setting
 - BPM acquisition
 - Data storage
- Processing of BPM data
 - Detection of "dead" BPMs
 - Detection of the non-empty bunches
 - Averaging of selected samples
- Frequency analysis
 - FFT
 - NAFF

Matlab processing

\varTheta 🖯 🖯 🔣 1000 turn BPM		
	test II and	
LOad BPM data		
Load file	suppress	
Save file		
Plot BPM	BPM 1 turns 9:end	
Plot turn	turn 15	
Ampl/phase	peak periods 1:16	
Phase specs	ID 4 turns 9900	
Deta functiona	modulation	
invariant	steri be uzero esti	

L. Farvacque - E.S.R.F.

Conclusions

- System built without major hardware or software investment
- Present limitations:
 - Still no real "single shot" measurement (for triggering reasons)
 - The measurement speed is limited by the control system (5 s / point)
- Many open possibilities:
 - 3 plane system (H, V, Long.)
 - Large number of available BPMs (a clever processing may compensate for the decoherence)

Thanks to...

- Diagnostics group
 - E. Plouviez
 - K. Scheidt
- A. Panzarella
- J.L. Revol