Frequency Map Analysis Workshop – April 1 & 2, 2004

Concluding remarks

1. FMA = <u>diagnostic tool</u> (data post processing)

identification of the limiting resonances lifetime beam losses injection . . . graphical representation Once you have it you must: ► \checkmark go back to optimisation codes (-> tune shifts with Amp, with $\Delta p/p$ sextupolar driving terms, ...) or \checkmark correct multipole errors or \checkmark add multipole correctors or \checkmark do nothing if you are happy !

but in any case you have to use modelling.

2. FMA relies on the quality of the data analysis

✓ Data from tracking code

✓ Data from Exp. measurements

* <u>During design phase</u> -> Tracking Code to optimise machine specification

Modelling should be accurate to design the best "on paper" machine

* Once Machine exists:

Refine the model to make it fitting the real machine. IS NOT OBVIOUS

3. Tracking codes

- \circ Most of the time 4D
- Sometimes 6D
- Each facility at this workshop has its own Tracking Code !!

WHY?

Not optimised use of the overall expert resources

The goal is to get the more precise way of representing non linearities.

6D important to introduce

✓ Radiation Damping✓ Synchrotron Oscillation

-> Change criticality of resonances

4. Real measurements

Quality of data depends on Exp. Set up

Key parameters:

•

- ✓ Number of BPM
- ✓ Resolution of BPM
 ✓ Linearity of BPM
 ✓ Kicker (Pinger) max amplitude
 - ✓ Kick reproducibility

Use tracking codes to weight the criticality of these parameters

Key issues:

- ✓ Measuring time
- \checkmark Time required to set up and optimise measurement
- \checkmark Decoherence (due to the integer part of the tune)
- → Problem can be solved (use sym BPM)

Alternative method (AC dipole) to be investigated

- 5. Alternative methods
- ✓ <u>Harmonic analysis</u>
 - provides directly resonance driving terms
 faster process from the measurement to the optimisation ?
- ✓ Response matrix:
 - Other way of comparing model to real machine
 - o direct correction (coupling, ...) of linear terms

Finally

- ✓ Very interesting discussions
- High quality of the presentations (good selection of relevant topics)

Thanks to all participants !