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Proposed GSI| Upgrade

‘An International Accelerator Facility for Research with lons and Antiprotons

Fredicted Gain Factors:

= primary beam intensaities: 100 (102 uranium/s)
+ HIB intensities: up to 10°

+ beam energy: 15

Special Froperties:
+ tast cooled beams of exotic nuclel
* internal targets {p.g) for in+ing experiments

Technology Challenges:
+ Fast cycling SC magnets for SIS 100/200
+ Fast bunch compresasion in SIS 100

= Highpower fragmentation target
+ Fast stochastic cooling inthe CR

= Medium energy electron cooling inthe NESR

Accelerator Physics Challenges for SIS 100/200;
+ | ow folerable relative beam loss

= Control of space charge effects

= Control of aynamic pressure effects




Of Particular Interest for GSI Project &

@ Accumulation of four SI818 batches Cha”enges
of U +28 at 96 MeV/u in the SIS100
in about 1 second. e The beam fills a good fraction

® This takes hundreds thousand turns of the beam pipe

® Maximum tuneshift of a bunched ® Beam loss at the percent level

beam is 0.2

Sagitia 17 nm Apertur 130 x 65 M

" spaoe fLhe shift:
AQD15025

|
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A New Area of Studies &

Single Particle Space Charge
Nonlinear Dynamics Dominated beams
no self consistent effect ® self consistent effect
nonlinearities intrinsic 1o the ® nonlinearities from latlice+beam

machine latiice e thousand turns

hundred thousand furns

TSa -~

For SIS100 this distinction
is no more justified.

1 s storage in presence of
|attice nonlinearities + space charge
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Work done:
® G.Franchetli et al. PRSTAB 6, 124201 (2003)

@® G. Franchetti, | Hofmann, M. Giovannozzi, M. Martini, E. Metral
29th ICFA Workshop HALO03 693, 73

® G. Franchetti, |. Hofmann
20th ICFA Workshop 642, 248

International effort on

Code Benchmarking on Space Charge and Nonlinear Dynamics

hitp:/mww—w2K.gsi.de/ihofmann/Benchmarking/Bench-marking.htm
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In this talk

® Present our understanding of the dynamics of long
term storage of space charge dominated bunched beams.

® We show that up to a certain extent this can be modeled
In a single pariicle framework

® We present the comparison between experimental results
and simulation

Our interests in this workshop

® Open a discussion for understanding better interplay of
lattice nonlinearities and "collective nonlinearities".

® Role of FMA in disentangling in the theory or in experiments
the dynamics of these complex system.
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A 2D example &

equation of motion

2 2
T+ (q_}g) T =K§2(1 — e 27)

\ \

space charge nonlinear

lattice defocusing term

focusing strength

Symplectic integration: space charge is included through kicks
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Space charge induced nonlinear tune

S
3q =40
13.3 -
q,=13.36
Aq=0.2 13.25 4 q=>53
132 -
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When the lattice has nonlinearities ““”éaﬁ

Y L 600
. L
I 3 :
1331 & 400 :—
_ 200 [
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20 sext. error a2 =0.01 53 oct. errors a3 = 0.005
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What happen when the perveance is dynamically
changed when in the lattice nonlinearities are present ?

For Dq _ 0 e | ———— o e i ' i e e i —

For Dg=0.1 —m

For Dq=02 —=

X/ G
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When the perveance K is changed

D -
I0F
i Edge of the

8- 3rd order island
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Island coming from inside particle orbit ’“E/%

X=4 q=13.36 current ramp 0.2/2048 [ Ag/turns]
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Island coming from outside the particle orbit __E/%

X = 30 q=13.36 curreni ramp -0.2 /2048 [A g/lurns]
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Trapping of particle into the island ’“@ﬁ%
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For a negative rate the capture process inverts the effect &

initial coordintes x=6, px =0 fromDg=0.02 toDg=0
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Change of space charge intensity
causes resonance trapping

Resonance trapping is not new In accelerators:

Studies of trapping induced by chromaticity

® AW Chaoetal Nucl Instrum. Methods 133, 405 (1976)
@ T. Satogataetal. PRL 68, 1838 (1992)

BUT

Space charge induces a nonlinear tune, whereas the previous
studies considered a detuning induced by chromaticity which
Is amplitude independent
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Consequencies

Particles may be transported out of a beam: HALO formation
in rings

Maximum distance of the paticles depends on bare tunes and
resonance position

Open questions
What is the probability of trapping/detrapping with space charge ?

What is the fraction of panticles in a bunch which will be brought
up to a certain amplitude ?

What is the role of dynamic aperture ?
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Measurements at the CERN-PS *"”é%
(October, 15-18, 2002)
R. Cappi, G.Franchetti, M. Giovannozzi, |. Hofmann, M. Martini, E. Metral

excite the resonance 4 Qx = 25 by using a single octupole

working point range: gqx =6.23 - 6.28, qy =6.08 - 6.4
octupole strength: K3 =1.215 | (M3 ) |=0~400A

momentum spread dp/p0= 26 10°

beam emittances (26 unnormalized): ex =9 mm mrad
ey = 4.5 mm mrad
bunch length: 200 ns

beam energy: 1.4 GeV

flat-top: of 1.2 seconds
Emittance measurements: flying wire (< 1ms)
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momentum spread dp/p0= 1073

beam emittances (26 unnormalized): ex =9 mm mrad
ey = 4.5 mm mrad
bunch length: 200 ns
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excitation of
4th order resonance
by using 1 octupole

scan of gx0
from 6.32 to 6.25
qy0 =6.12

The PS experiment
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PS experiment on Resonance Crossing: Summary &

qy0 =6.12
K3=49m
Dgx = 0.077
Dagy=0.12
flat-top 1.2 sec
turns 5+10°
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Benchmarking: experiment vs simulation
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3D long term simulation
n(z,y,2) = A(T) /(4rabe), /ﬂ CayBd =1,

with

The charge distribution is given by p(z, v, 2) = @ n(z,y, z), with @ the total
charge in the bunch. The electric field is given by

_Q_r A(T)
B.=ga | (a2 D372(F2 + 1)1 (2 ¢ )it
with 2 ; ,
N T
P = .
@+ B0 (1)
if a = b then:

ﬁ.[:t) = i ﬂth
I=(

g & EY oo _ " :
E, = 5 . ), i 1T i) Tam(t) = fn (@2 +&)1% (2 4 t)1/24m #
For the simulation

W1 _ 432 ; 5
w={ PG L E o e e
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renormalizing beam size by computing the rms emittances

every 500 turns
15
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Conclusion

* We have described a mechanism for halo formation in rings

® Simulation prediction are in good agreement in the region of
emittance growth

® We predict a halo radius which increases as Qx0 approaches
the resonance

® Beam loss may occur when halo radius exceed dynamic aperture
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