Guiding Lines for Computing and Reading a Frequency Map

New FMA Calculations for SOLEIL including Insertion Device Effects

Laurent S. Nadolski Pascale Brunelle and Amor Nadji

FMA workshop

Computing a frequency map

Tools

- Tracking codes
 - Simulation: Tracy II, Despot, MAD, AT, ...
 - Nature: beam signal collected on BPM electrodes
- NAFF package (C, fortran, matlab)
- Turn number Selections
 - Choice dictated by
 - Allows a good convergence near resonances
 - Beam damping times (electrons, protrons)
 - 4D/6D
 - AMD Opteron 2 GHz
 - 0.7 s for tracking a particle over 2 x 1026 turns
 - 1h00 for 100x50 (enough for getting main caracteristics)
 - 6h45 for 400x100 (next fmap)
 - Step size following a square root law (cf. Action)

Mapping

FMA workshop

SYNCHROTRON

Rigid pendulum

SYNCHROTRON

Diffusion D = $(1/N)*\log 10(||\Delta v||)$

FMA workshop

Soleil Beam Dynamics investigations using FMA

- Working point 18.2010.30
 - Lattice: bare, errors, IDs
 - Optimization schemes
- Design of a new working point taking into account what was discovered through FMA
- Conclusions

Optimization Method

Lattice design

Fine tuning

Tracking

NAFF

Dynamics analysis

Needed

- Tuneshift w/ amplitude
- Tuneshift w/ energy
- **Robustness to errors** multipoles coupling IDs
 - 4D tracking • 6D tracking

•(x-z) fmap \rightarrow injection eff. •(x- δ) fmap \rightarrow Lifetime Touschek computation

Resonance identification

Knobs

10 quadrupole families

10 sextupole families

NAFF suggestions

Yes

Reference working point (18.2, 10.3)

Just looking at these curves, it seems very clean ...

No coupling resonance crossing

FMA workshop

April 1st and 2nd, 2004 L. Nadolski 11

On-momentum Dynamics --Working point: (18.2,10.3)

On-momentum dynamics with 1.9% coupling (18.2,10.3)

Importance of including vaccum chamber

FMA workshop

SYNCHROTRO

April 1st and 2nd, 2004 L

L. Nadolski

Adding effect of 3 in-vacuum IDs

Particle behavior after Touschek scattering

SYNCHROTRON

$$A_{x} = \gamma_{x_{0}} (\eta_{0} \delta)^{2} + 2 \alpha_{x_{0}} (\eta_{0} \delta) (\eta_{0} \delta) + \beta_{x_{0}} (\eta_{0} \delta)^{2}$$

Chromatic orbit $+\delta$

Chromatic orbit $-\delta$

Closed orbit

Non-linear synchrotron motion

 $+3.8\% \leftrightarrow -6\%$

FMA workshop

SYNCHROTRON

April 1st and 2nd, 2004 L.

L. Nadolski

Off momentum dynamics w/o IDs

Off momentum dynamics w/ 3 x U20

What's about Effect of synchrotron radiation and damping?

Coupling reduction by a factor 2 with $3 \times U20$

Optimization of a New Point Enhanced philosophy

- On momentum
 - $3 v_x + v_z = 65$ to be avoided (not shown w/o fmap)
 - WP to be shifted from resonance node: locus of most particles
 - Control of tune shift with amplitude using sextupole knobs
 - $v_x(J_x, J_z) = a J_x + b J_z$
 - $v_z(J_x, J_z) = \mathbf{b} J_x + c J_z$
- Off momentum $v_x(\delta)$
 - Large energy acceptance
 - Control of the tune shift with energy using sextupoles
 - The 4 $v_x = 73$ resonance has to be avoided for insertion devices

Energy tune shift for the new WP 18.19 / 10.29

18.20 / 10.30 18.19 / 10.29 0.5 0.5 0.45 0.45 0.4 0.4 0.35 0.35 ν_z ν_{z} 0.3 0.3 0.25 0.25 0.2 0.2 v_x v_x 0.15 0.15 dp/p dp/p 0.1 0.1 -.06 -.04-.02 0.0 0.02 0.04 0.0 -.06 -.04 -.02 0.0 0.02 0.04 Tune shift w/ energy optimised with sextupoles to avoid in addition the $4v_x = 73$ resonance for negative energy offset

L. Nadolski

FMA workshop April 1st and 2nd, 2004

On momentum fmap for the WP 18.19 / 10.29

FMA workshop

SYNCHROTRO

On momentum fmap for the WP 18.19 / 10.29 with 3 x U20

FMA workshop

Off momentum fmap for the WP 18.19 / 10.29

FMA workshop

Off momentum fmap for the WP 18.19 / 10.29 with $3 \times U20$

Conclusions

FMA at design stage for the SOLEIL lattice

- Gives us a global view (footprint of the dynamics)
- Dynamics sensitiveness to quads, sextupoles and IDs
- Reveals nicely effect of coupled resonances, specially cross term $v_z(x)$
- Enables us to modify the working point to avoid resonances or regions in frequency space
- Importance of coupling correction to small values (below 1%)
- 4D/6D …

Aknowledgements and references

- Institutes
 - IMCCE, ALS, SOLEIL
- Codes
 - BETA (Loulergue -- SOLEIL)
 - Tracy II (Nadolski -- SOLEIL, Boege -- SLS)
 - AT (Terebilo http://www-ssrl.slac.stanford.edu/at/welcome.html)
- Papers
 - Frequency map analysis and quasiperiodic decompositions, J. Laskar, Proceedings of Porquerolles School, sept. 01
 - Global Dynamics of the Advanced Light Source Revealed through Experimental Frequency Map Analysis, D. Robin et al., PRL (85) 3
 - Measuring and optimizing the momentum aperture in a particle accelerator, C. Steier et al., Phys. Rev. E (65) 056506
 - Review of single particle dynamics of third generation light sources through frequency map analysis, L. Nadolski and J. Laskar, Phys. Rev. AB (6) 114801

