

Frequency maps for designing proton accelerators

Yannis Papaphilippou

Orsay, April 1-2, 2004

- Elena Benedetto, Oliver Brüning, Jean-Pierre Koutchouk, Jacques Gareyte, Francesco Ruggiero, Frank Schmidt, Frank Zimmermann (CERN)
- Alexei Fedotov, Nikolay Malitsky, Jie Wei (BNL)
- Dan Abell (TechX)
- Giovanni Rumolo (GSI)
- Jacques Laskar (IMCEE-ASD)

Outline

- Non-linear dynamics in proton accelerators
- Dynamics of the LHC and frequency maps
 - Detrimental effects of dipole errors
 - Diffusion maps as quality factor for correction schemes
 - Beam-beam effect
 - Super-bunches and crossing schemes for LHC upgrade
 - Frequency for understanding collective non-linear beam dynamics (the e-cloud effect)
- Dynamics of the SNS
 - Off-momentum frequency maps for working point choice

Non-linear dynamics studies in proton accelerator

Accelerator design focuses on high performance

- Colliders → Luminosity (number of events/second)
 L = N²k_bγ/(4πε_nβ^{*}), with N number of particles, k_b number of bunches, γ relativistic factor, ε_n normalized emittance, β^{*} betatron function at the I.P.
- High-intensity machines \longrightarrow Average beam power $\bar{P} = \bar{I}E = f_N NeE_s$ with \bar{I} the average current

Non-linear effects limit the performance \longrightarrow beam loss

- Colliders \longrightarrow Reduced lifetime
- High-intensity machines \longrightarrow Radio-activation

Identification of non-linearities and correction

Dynamics of the LHC

Long-term stability of the beam (e.g. Injection period $\rightarrow 10^7$ turns) limited by

- Errors in super-conducting magnets (main dipoles, IR quadrupoles)
- Magnet misalignments and rolls
- Power supplies' ripple and tune-modulation
- Beam-beam effect
- Wall effects wake fields (impedances)
- Electron cloud and other collective instabilities

Measure of beam stability \rightarrow Dynamic Aperture (DA)

- Impossible to track full injection/ramping/collision period
- No insight in structure of phase space
- Use of analytical and numerical non-linear dynamics methods (normal form construction, frequency maps, etc.)

Frequency maps for the LHC

Example 2 Frequency map for the LHC optics version 5 using the target error table (left) and an increased a_4 error in the main dipoles (right).

Diffusion Maps

Calculate tune for two equal and successive time spans and compute diffusion vector:

$$D|_{t=\tau} = \nu|_{t\in(0,\tau/2]} - \nu|_{t\in(\tau/2,\tau]},$$

Plot the points in (I_{x0}, I_{y0}) -space with different colors

- grey for stable $(|\mathbf{D}| \le 10^{-7})$ to
- black for strongly chaotic particles $(|D| > 10^{-2})$.

Diffusion quality factor:

$$D_{QF} = \left\langle \; \frac{|D|}{(I_{x0}^2 + I_{y0}^2)^{1/2}} \; \right\rangle_R \, .$$

Machine Division

Diffusion Maps for the LHC

Machine Division

Efficiency of LHC correction schemes suggested by J.P.Koutchouk

Efficiency of 5 different correction schemes for the b_4 and b_5 error in the main dipoles using frequency diffusion as a quality factor. Average tune variation vs. particles' amplitude with $\delta p/p = 7 \times 10^{-4}$ and for $(Q_x, Qy) = (0.28, 0.31)$ (top) and $(Q_x, Qy) = (0.21, 0.24)$ (bottom).

Beam-beam effects in the LHC

with F.Zimmermann

Schematic of long-range collisions experienced by closely spaced short bunches on either side of the primary head-on interaction point (IP).

Variable	Symbol	Value
Beam energy	E	7 TeV
Particle species		protons
Full crossing angle	$ heta_c$	$300 \ \mu rad$
rms beam divergence	σ'_x	31.7 μ rad
rms beam size	σ_x	15.9 μm
Normalized transv.		·
rms emittance	$\gamma \varepsilon$	3.75 µm
IP beta function	$oldsymbol{eta}^*$	0.5 m
Bunch charge	N_b	$(1 \times 10^{11} - 2 \times 10^{12})$
Betatron tune	Q_0	0.31

LHC parameters used in weakstrong beam-beam simulations

Beam-beam effects in the LHC

Figure 8: LHC tune footprints obtained with head-on and long-range collisions and triplet errors.

Machine Division

LHC luminosity upgrade: super-bunches and alternative crossing schemes

with F.Ruggiero, G. Rumolo and F.Zimmermann

'strong' beam

θ

u

'weak' beam

θ

S

- Left: Gaussian bunches (LHC); right: superbunches (LHC-II?)
- Luminosity increases by increasing the product of bunch length and crossing angle
- Second option: the use of long super-bunches (almost coasting beams, e.g. ISR)
- Advantages: i) Cancellation between head and long-range components of the beam-beam tune-shift, ii) Absence of PACMAN bunches iii) possibility of avoiding multipacting and e-cloud built up
- Disadvantages: enhanced radiation damage of the detector (increased luminosity and higher rate of reactions during the bunch crossing) u^*
- Essential ingredient the alternating crossing of beams between the IPs i) Horizontal / vertical (LHC nominal) ii) 45%/135% between the planes (inclined hybrid crossing, foreseen for Tevatron RunIIb)&&

Frequency maps for inclined hybrid crossing

• The tune-shift with amplitude is much reduce with the inclined hybrid scheme (much less resonance crossing)

Question about the change in the tune-shift direction

Machine Division

 Diffusion maps confirm that the inclined hybrid crossing is better with respect to non-linear beam dynamics

Diffusive aperture and frequency maps for super-bunches

- The tune-shift with amplitude is much reduce with the inclined hybrid scheme (much less resonance crossing).
- Crossing angle of 1000µrad much better than 423µrad

Machine Division

Frequency maps and collective beam dynamics: the e-cloud effect with E.Benedetto et al.

E-cloud can lead to emittance blow up
Understand the non-linear dynamics of protons under the influence of the electron

potential

- Freeze the electron potential issued by a multi-particle simulation
- Integrate the equations of motions of protons under the influence of this potential

Figure 8: Tune footprint obtained from tracking through a frozen electron potential with 1 IP per turn by a frequency-map analysis [8].

Average Beam Power to the target (2MW)

Key Issue: Low losses for reducing radio-activation

Machine Division

Expected Tune-shifts

Mechanism	Tune-shifts	
Space Charge (2MW beam)	0.15-0.20	
Chromaticity (δp/p=1%)	±0.08	
Quadrupole fringe-field	0.025	
Uncompensated magnet errors	±0.02	
Compensated magnet errors	±0.002	
Chromatic Sextupoles	±0.002	
Fixed injection chicane	0.004	
Injection painting bump	0.001)

 $480\,\pi$ mm mrad

Frequency and Diffusion Maps for the SNS Ring

- Model includes
 - Magnet fringe-fields (5th order maps)
 - Magnet systematic and random errors (10⁻⁴ level)
 - 4 working points, with and without chromaticity correction
 - No RF, no space-charge
- Single particle tracking using FTPOT module of UAL
 - 1500 particles uniformly distributed on the phase space up to 480 π mm mrad, with zero initial momentum, and 9 different momentum spreads (-2% to 2%)
 - 500 turns

$$\mathcal{F}_{\tau} : \overset{\mathbb{R}^2}{(I_x, I_y)|_{p_x, p_y = 0}}, \xrightarrow{\longrightarrow} \overset{\mathbb{R}^2}{(\nu_x, \nu_y)}$$

Working point (6.4,6.3)

Machine Division

Working Point Comparison

Tune Diffusion quality factor

$$D_{QF} = \left\langle \begin{array}{c} |D| \\ (I_{x0}^2 + I_{y0}^2)^{1/2} \end{array} \right\rangle_R$$

Machine Division

Working Points (6.40,6.30) - (6.23,6.20) with A.Fedotov et al.

Identification of resonances for new working points SNS Working Points

Ν	Resonances	Туре	Perturbation	Correction
2	(2,0) (0,2)	Normal quadrupole	Quadrupole errors & misalignement	Quad TRIMS
2	(1,-1)	Skew quadrupole	Magnet Tilt - Space charge	Skew Quad. round beam
3	(3,0) (1,2) (1,-2)	Normal sex tupole	Sex tupole errors in dipoles	Sex tupoles
3	(2,1) (2,-1) (0,3)	Skew sex tupole	Magnet skew sex tupole error	Skew Sext.
4	(4,0) <mark>(2,2)</mark> (2,-2) (0,4)	Normal octupole	Quadrupole fringe-fields, space-charge	Octupoles
4	(3,1) (3,-1) (1,3) (1,-3)	Skew octupole	Magnet errors	None

Machine Division