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particle acceleration in jets:   
New insights Offered by CTA (+ MW)



Origin of  Cosmic Rays (CRs):  One of the lead priorities 
for European and Dutch Astroparticle strategic plans  

Physics of  compact objects:   E.g., how do black holes 
(BHs) and associated accretion flows/jets work?   Coupling 
of plasma physics (magnetized) and strong gravity 

Galaxy Evolution:  The same BH jets that accelerate CRs 
play a significant role in altering their surroundings, 
suppressing galaxy growth  

Transients:  Galactic jets can be *transient* sources of 
CRs 

CTA:  If a jet accelerates CRs to TeV energies, you can get 
TeV γ-rays too!

Jet studies embody several research priorities for EU/NL



The current situation: too many black boxes

Black Box E: 
Jet Feedback

Black Box B: 
Jet Dynamics

Black Box A: 
Jet Launching

Black Box C: 
Jet Content

Black Box D: 
Particle 

Acceleration
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CTA can help address especially 
these core questions
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TeV gamma-rays are tracers of acceleration

Particles (e+e- pairs 
and/or e-p/ions)

B field (or ∇V) shock (or turbulence, 
or waves) + +

accelerated particles 
(CRs: e+e-,p’s, ions)=

synchrotron ➠ SSC

+ CRs ➠ π0’s

+ CMBR/EBL γ’s ➠ π0’s, IC



CTA on its own will be very interesting for jet studies  

➠ Characterize TeV spectrum/variability, identify the 
sources able to accelerate CRs to the highest energies 

➠ For Galactic jets, identify states associated with sporadic 
CR acceleration 

➠ Survey mode:  populations and potentially serendipitous 
new states dominated by γ-rays    

CTA together with MW facilities (radio through GeV)  

➠ key constraints on plasma/particle acceleration coupling 
properties in jets, particularly in Galactic jets (X-ray 
Binaries—XRBs)

What CTA offers
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➠ Within the PHYSics WG, we can help make predictions for 

AGN and XRBs, key also for EBL models (A. Reimer’s talk)

Pointing system (PI: Berge)
➠ We have a program to improve pointing accuracy (<10”, 

ideally few “), key to localising flares in extended jets, or 
transient sources in crowded fields

Expertise on dynamic observing, MW triggering (giving/
receiving), data handling, observatory
➠ particularly for XRBs, new insights from radio/X-ray 

monitoring are paving the way for triggered TeV runs

➠ User Group, data handling groups:  can help test fake data 
sets, use for model predictions in astro software

What we (NL) can offer CTA



Two kinds of Radio Galaxies (AGN): FRI vs FRII
FRII FRI



Hillas Diagram:  estimates of CR accelerator sites

Larmor radius < source size: 
Emax ~ ZeBR
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All the TeV-detected AGN are more FRI-like  
(low-luminosity, steady-jet dominated “state” of AGN) 

From AGN science case for CTA paper in Astroparticle Physics, Sol et al. 2013



All the TeV-detected AGN are more FRI-like  
(low-luminosity, steady-jet dominated “state” of AGN) 

From AGN science case for CTA paper in Astroparticle Physics, Sol et al. 2013

Was a bit unexpected, but it’s good for us 
since the NL has significant expertise in 
low-luminosity jets (e.g., UvA: SM, RU  
Nijm: Falcke, Körding, Moscibrodzka) 



Extreme TeV Variability 
found in M87 

(Veritas, HESS, MAGIC, VLBA 2008, Science)

Causality:  emission region 
≤ 5δRS ➠ rules out DM 
annil, CR with IGM, knots.  
Leaves just regions interior 
to jet, “mini-jets” 
Precision VLBA localized 
radio to the core/nucleus, 
very hard to understand 
how TeV photons would 
escape pair production 
Challenges to models, 
“minijets” a good 
candidate, flux tubes within 
the jet
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(Acciari et al. 2008, Böttcher et al. ++)

Single zone modelling is the current standard



(Acciari et al. 2008, Böttcher et al. ++)

Leptonic signatures mostly: but are they ‘hot’ 
e-s in hadronic plasma ?  e+e- pairs from 

Poynting flux dominated jet?  e+e- pairs from 
parent hadronic collisions: pp or pγ → e+e- 

Single zone modelling is the current standard



BL Lac itself (MOJAVE group, VLBI, in prep.)

Steady  (for yrs) component 
= recollimation shock

They see magnetosonic waves  
emitted from shock component:   

prediction of  this type of  scenario!



(Vlahakis et al. 2000, Vlahakis & Königl 2003, Polko, Meier & SM 2010, 2013, 2014)
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New models:  location of acceleration and jet dynamics linked 
explicitly to conditions in inner accretion flow (breaks degeneracies)
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We can look to little black holes for key physics

Supermassive BH= 
Active Galactic 
Nucleus (AGN)

Donor star	
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Accretion disk corona	



compact	
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MBH ~ 107-10 M☉ MBH ~ 10 M☉
1 day104-6 yrs!
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(SM ea. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding, SM 2004;  
SM 2005;  Körding et al. 2006; Plotkin, SM, Kelly, Körding & Anderson 2012)

BHs (with compact jets) seem to regulate 
their radiative and mechanical luminosity 

similarly, regardless of  mass, at a given 
Eddington accretion rate ṁ= Ṁ/ṀEdd 

log LX = (1.45±0.04)*logLR  - (0.88±0.06)*logMBH - const. 

Mass/power scalings (XRB  ⇔ FRI/BL Lac) 
The “Fundamental Plane” of  BH accretion



Schematic of “BL Lac” like state in XRBs
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Plus (new!):  hadrons discovered in XRB jets!

(Diaz Trigo et al. 2013; Nature)



(D.Russell et al. 2013ab; T. Russell et al. 2014)
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(D.Russell et al. 2013ab; T. Russell et al. 2014)

Simultaneous MW spectra ➠ jet break evolution

?

MAXI J1836-194

  EVLA                   SMA                                       VLT/VISIR 

Hillas argument (Emax~ZeBR) 
gives Ep,max ~10-20 PeV
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XTEJ1550-564: Jets contribute 
40-100% of X-ray flux in the 

hard state

First forays into γ-ray detections of XRBs: Cyg X-1

(Laurent et al. 2011; Jourdain et al. 2012)
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XTEJ1550-564: Jets contribute 
40-100% of X-ray flux in the 

hard state

First forays into γ-ray detections of XRBs: Cyg X-1

(Laurent et al. 2011; Jourdain et al. 2012)

75% 
polarization!

INTEGRAL Obs. of Cyg X-1
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Time variable XRB behavior: The HID  
Different forms of  outflows: jets, winds or nothing

Hard state: 
= steady jetsHIM/SIM transition 

= ballistic jets

Soft state: 
= no jets? winds

(thermal) (nonthermal)



Cyg X-3:  radio/GeV γ-ray flares (Fermi/AGILE)

(FERMI; Corbel et al. 2012)
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✸ CTA can help us understand internal workings of  jets and how plasma 

physics determines acceleration:  the AGN jets of  key interest happen to 
be the kind of  jets we (in the NL) specialise in!  

✸ XRBs reveal the coupling between jet powering and particle acceleration:  
we see buildup from launch to onset of  particle distribution, can localize 
acceleration regions  ☛ key constraints for physical models, relevant to BL 
Lacs because of  “Fundamental Plane” 

✸ Potential for XRBs with CTA still not fully explored, particularly w/r/t 
multiwavelength monitoring and triggering:  few γ-ray flares seen 
accidentally, need to start defining campaigns with HESS-2 as lead-up.  We 
can get involved already by interfacing with HESS-2 Galactic folk!! 
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multiwavelength monitoring and triggering:  few γ-ray flares seen 
accidentally, need to start defining campaigns with HESS-2 as lead-up.  We 
can get involved already by interfacing with HESS-2 Galactic folk!! 

✸ Outlook:  
➠ Improved models:   implementing hadronic processes(S. Drappeau),  new 

MHD+gravity jet flow solutions (C.Ceccobello)
➠ Early Science:  We should be thinking of  how we can effectively engage 

the mini-array in transient studies, especially given upcoming “transient 
factories” coming online by 2016

➠ Galactic populations:  Eventually can use CTA survey results to 
characterise XRB contribution to Galactic CRs, effects on ISM, etc.


