Observation of B_s→μ⁺μ⁻ at the LHC: LHCb results

Justine Serrano on behalf of the LHCb Collaboration Centre de Physique des Particules de Marseille

Setting the scene

November 2012: LHCb find the first evidence with 1 (7 TeV) + 1 (8 TeV) fb⁻¹

Phys. Rev. Lett. 110, 021801 (2013)

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 9.4 \times 10^{-10} \text{ at } 95\% \text{ CL}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

Significance of 3.5 σ !

- Today we present an update with the full dataset: 1 (7 TeV) + 2 (8 TeV) fb⁻¹
- All data consistently reprocessed
- All data in m(B⁰_(s))±60 MeV/c² are blind until analysis completion!

The LHCb detector

B_{s/d}→μ⁺μ⁻ at LHCb

Running at a constant luminosity of 4.10³² cm⁻² s⁻¹ thanks to the luminosity

leveling

This is twice the design luminosity!

Interactions per crossing

$$<\mu>\sim 1.7$$

This is four times more than design!

- Large muon trigger efficiency:
 - L0 single muon p_T>1.76 GeV/c, dimuon sqrt(p_T1xp_T2)>1.6GeV/c
 - HLT: IP and invariant mass cut
 - Global efficiency for B_{s/d}→μ⁺μ⁻: ~90%

B_{s/d}→μ+μ⁻ at LHCb

- Excellent momentum and IP resolution:
 - δp/p ~0.4% to 0.6% for p=5-100 GeV/c

• $\sigma(IP) = 25 \, \mu m @ 2GeV/c$

- Excellent muon identification:
 - Use muon chambers information + global PID likelihood (RICH, CALO, MUON)
 - $\epsilon(\mu \rightarrow \mu) \sim 98\%$, $\epsilon(\pi \rightarrow \mu) \sim 0.6\%$, $\epsilon(K \rightarrow \mu) \sim 0.4\%$, $\epsilon(p \rightarrow \mu) \sim 0.3\%$

5

Analysis strategy

Selection

- Oppositely charged muons making a good vertex separated from the PV with $m_{\mu\mu}$ in the range [4.9-6] GeV/c²
- Loose cut on a MVA discriminant
- Similar to control channels (B_{d/s} → h⁺h⁻, B⁺→J/ψK⁺)
- Signal and background discrimination:
 - Boosted decision tree combining kinematic and geometrical properties
 - Invariant mass
 - Data driven calibration through control channels
- Normalization using $B^+ \to J/\psi K^+$ and $B_d \to K\pi$
- Background estimation
 - Combinatorial from m_{µµ} sidebands
 - Double misidentified $B_{d/s} \rightarrow h^+h^-$ (h=K, π)
 - Detailed study on various exclusive background

Analysis strategy

Results

- BR measurement using a maximum likelihood fit to the invariant mass in bins of BDT
- In case no significant signal is found, limit measurement using the modified frequentist CLs method in bins of mass and BDT

Strategy similar to previous analysis Main improvements:

- new detector alignment and reconstruction
- Improved BDT classifier
- Refined exclusive background estimate

Signal discrimination

8

Signal discrimination: BDT

■ Goal is to differentiate signal events from combinatorial background bb→μμX

- BDT training, choice of variable and BDT parameters optimization based on MC signal and bb—µµX background (new sample equivalent to 7 fb⁻¹)
- 12 variables used (previously 9) based on kinematic and topological information
- chosen to avoid correlation with invariant mass

BDT variables

B candidate:

- proper time
- IP
- p_T
- isolation
- Angle between the B momentum and P_{thrust}
- Angle between μ^+ direction in the B rest frame and P_{thrust} in the B rest frame

P_{thrust} is the sum of momenta of all tracks consistent with originating from the decay of the other b hadron

Muons:

- min IP significance
- distance of closest approach
- isolation
- polarization angle
- $|\eta(\mu_1) \eta(\mu_2)|$
- $|\phi(\mu_1) \phi(\mu_2)|$

BDT variables

BDT output

- BDT output defined to be flat for signal and peaked at 0 for background
- Signal shape derived from $B_{d/s} \rightarrow h^+h^{'-}$ (h=K,π) data (same topology as signal)
- Background from dimuon mass sidebands

Analysis performed in 8 BDT bins

12

Signal discrimination: invariant mass

 Central value taken from exclusive B_{d/s} → h⁺h²

$$\mu_{R^o} = (5284.90 \pm 0.10 \pm 0.20) \text{ MeV/c}^2$$

$$\mu_{B_c} = (5371.85 \pm 0.17 \pm 0.19) \text{ MeV/c}^2$$

- Resolution from B_{d/s} → h⁺h² exclusive and di-muon resonances.
- The 2 methods are in agreement

$$\sigma_{B^o} = (22.83 \pm 0.07 \pm 0.42) \text{ MeV/c}^2$$

$$\sigma_{B_s} = (23.24 \pm 0.08 \pm 0.44) \text{ MeV/c}^2$$

Normalization

Normalization

$$\mathrm{BR} = \mathrm{BR_{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{GEN}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL\&REC|GEN}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG|SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{GEN}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL\&REC|GEN}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG|SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_q^0}} \times \frac{N_{B_q^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha_{\mathrm{cal}} \times N_{B_q^0 \to \mu^+ \mu^-}$$

Ratio of probability for a bquark to hadronize into a given meson, $f_{ij} = f_{ij}$

2 normalization channels used:

Similar trigger than signal, one more track

Same topology as signal, different trigger

15

B fragmentation f_s/f_d

- f_s/f_d is measured at LHCb with 2 independent methods
 - Ratio of $B^0 \to D^- K^+/\pi^+$ and $B_s \to D_s^- \pi^+$ (JHEP 04 (2013) 1)
 - $B_s \to D_s X \mu$ and $B \to D^+ X \mu$ (PRD 85 (2012), 032008)

- Recently updated using new BR(D_s \rightarrow KKπ) from CLEO, Babar and Belle and new B lifetime measurements
- Average :

$$\frac{f_s}{f_d} = 0.259 \pm 0.015$$

LHCb-CONF-2013-011

(Error decreased from 7.8% to 5.8%)

LHCb also found a small dependence with the pT(B). Effect neglible for this analysis.

16

Normalization: results

$$\mathrm{BR} = \mathrm{BR_{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{GEN}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL\&REC|GEN}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG|SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{GEN}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL\&REC|GEN}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG|SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_q^0}} \times \frac{N_{B_q^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha_{\mathrm{cal}} \times N_{B_q^0 \to \mu^+ \mu^-}$$

Evaluated from MC, cross checked with data. Corrected for time acceptance effect

Measured in data using $J/\psi \rightarrow \mu^+\mu^-$

Ratio of probability for a b-quark to hadronize into a given meson

The 2 normalization channels give compatible results Average:

$$\alpha_{B_s^0 \to \mu^+\mu^-} = (9.01 \pm 0.62) 10^{-11}$$
 $\alpha_{B_d^0 \to \mu^+\mu^-} = (2.40 \pm 0.09) 10^{-11}$

SM expectations in the signal mass windows:

$$40 \pm 4 \ B_s^0 \to \mu^+ \mu^-$$
 and $4.5 \pm 0.4 \ B^0 \to \mu^+ \mu^-$

Time acceptance

Time dependent decay rate:

$$\Gamma\left(\mathsf{B}_{\mathsf{s}} \to \mu^{+} \mu^{-}\right) = \Gamma\left(\mathsf{B}_{\mathsf{s}}^{\mathsf{0}}(\mathsf{t}) \to \mu^{+} \mu^{-}\right) + \Gamma\left(\overline{\mathsf{B}}_{\mathsf{s}}^{\mathsf{0}}(\mathsf{t}) \to \mu^{+} \mu^{-}\right)$$

$$= R_{H} e^{-\Gamma_{H} t} + R_{L} e^{-\Gamma_{L} t}$$

$$= \left(R_{H} + R_{L}\right) e^{-\Gamma_{s} t} \left[\cosh \frac{y_{s} t}{\tau_{\mathsf{B}_{\mathsf{s}}^{\mathsf{0}}}} + \mathcal{A}_{\Delta \Gamma} \sinh \frac{y_{s} t}{\tau_{\mathsf{B}_{\mathsf{s}}^{\mathsf{0}}}}\right]$$

$$\begin{array}{ll} y_s &=& \displaystyle \frac{\Gamma_L - \Gamma_H}{\Gamma_L + \Gamma_H} & \text{From HFAG:} \quad y_s = 0.0615 \pm 0.0085 \\ \\ \mathcal{A}_{\Delta\Gamma} &=& \displaystyle \frac{\Gamma_{B^0_{s,H} \to \mu^+ \mu^-} - \Gamma_{B^0_{s,L} \to \mu^+ \mu^-}}{\Gamma_{B^0_{s,H} \to \mu^+ \mu^-} + \Gamma_{B^0_{s,L} \to \mu^+ \mu^-}}. & \text{Channel and model dependent, =1 in the SM} \\ \text{(De Bryun et al, arXiv:1204.1737)} \end{array}$$

 Since the selection biases the decay time, the time integrated efficiency is also model dependent

$$\epsilon_{\mathsf{B}_{\mathsf{s}}^{0} \to \mu^{+}\mu^{-}} = \frac{\int_{0}^{\infty} \epsilon(t) \Gamma^{\mathcal{A}_{\Delta\Gamma}, y_{\mathsf{s}}}(t) \mathrm{d}t}{\int_{0}^{\infty} \Gamma^{\mathcal{A}_{\Delta\Gamma}, y_{\mathsf{s}}}(t) \mathrm{d}t}$$

Bs2MuMu @ LHCb Justine Serrano

18

Time acceptance

The efficiency determined from MC should be corrected using latest PDG value $\tau_{B_{sH}} = 1.615 \pm 0.021 \text{ ps}$

$$\begin{split} \delta_{\epsilon} &= \frac{\epsilon^{\mathcal{A}_{\Delta\Gamma}, y_s}}{\epsilon^{MC}} \\ &= \frac{\int_0^{\infty} \Gamma(B_s^0(t) \to \mu^+ \mu^-, \mathcal{A}_{\Delta\Gamma}, y_s) \epsilon(t) \mathrm{d}t}{\int_0^{\infty} \Gamma(B_s^0(t) \to \mu^+ \mu^-, \mathcal{A}_{\Delta\Gamma}, y_s) \mathrm{d}t} \times \frac{\int_0^{\infty} e^{-\Gamma_{MC} t} \mathrm{d}t}{\int_0^{\infty} e^{-\Gamma_{MC} t} \epsilon(t) \mathrm{d}t}. \end{split}$$

Correction for B_s: 4.57±0.02%

We also need to correct for the B⁰ as we assume the same efficiency as for B_s

Correction for B⁰: 1.50±0.01%

19

As the BDT distribution is obtained from B_{d/s} → h⁺h'⁻ control sample, dominated by B_d → Kπ, it should also be corrected due to the different decay time of B_d and B_s. This correction goes from 0.3 to 4.7% depending on the bin.

Background estimation

Combinatorial background

- The main background source in the signal window is combinatorial from bb→μμX
- For the limit computation, the expected number of background events is obtained by a exponential fit to the invariant mass sideband in each BDT bin

In higher BDT region, other sources of background become dominant

Exclusive background sources

 Exclusive background can both enter in the signal search windows and/or spoil the evaluation of the combinatorial background from sidebands

- In the signal region: only the B_{d/s} → h⁺h^{'-} double misID matters
- In the sidebands, decays with one hadron misidentified as muon or 2 muons coming from the same vertex can fake the signal:

$$\begin{array}{ll} B^0 \to \pi^- \mu^+ \nu & \qquad \qquad B^{0/+} \!\!\! \to \pi^{0/+} \!\!\! \mu \mu \\ B_s \to K^- \!\!\! \mu^+ \nu & \qquad B_c \to J/\psi (\mu \mu) \; \mu \nu \\ \Lambda_b \!\!\! \to p \mu \nu & \qquad \end{array}$$

Other channels, as $B_{(s)} \to D_{(s)} \mu X$ with $D \to \mu X,$ found to be negligible

B_{d/s} → h⁺h'⁻ double misID

- 1. MisID probabilities are measured on data as function of P and P_T
 - $\pi \to \mu$ and $K \to \mu$ measured in $D^* \to D^0 \pi$, $D^0 \to K \pi$
 - $p \rightarrow \mu$ measured in $\Lambda \rightarrow p\pi$
- 2. These probabilities are then convoluted with the MC spectra of $B_{d/s} \rightarrow h^+h^{\prime-}$ to get the average double misID efficiency $\epsilon_{\mu\mu \rightarrow hh}$ (~10⁻⁵)
- 3. The rate is obtained applying $\epsilon_{\mu\mu\to hh}$ to the measured $B_{d/s}\to h^+h^{\prime-}$ yield
- 4. The mass shape is evaluated from MC
- 5. $B_{d/s} \rightarrow h^+h^{\prime-}$ is included as a fit component with rate constrained to the expected yield

Other exclusive backgrounds

- Number of expected events normalized to the yield of B⁺ → J/ψK⁺
- For backgrounds components that should be included in the fit:
 - The mass PDF in each BDT bin is determined from MC
 - The normalization is fixed to the number of expected events.
- $B^0 \to \pi^- \mu^+ \nu$, $B_s \to K^- \mu^+ \nu$, $B^{0/+} \to \pi^{0/+} \mu \mu$ are included as fit component
- $\Lambda_b \rightarrow p \mu \nu$: evaluated as a systematic
- $B_c \rightarrow J/\psi \mu \nu$: peak at low BDT, taken into account by the exponential fit

Expected background yield in [4.9-6] GeV/c²

	Yield in full BDT range	Fraction with BDT > 0.7 [%]
$B^0_{(s)} \to h^+ h'^-$	15 ± 1	28
$B^0_{(s)} \to h^+ h'^- B^0 \to \pi^- \mu^+ \nu_\mu$	115 ± 6	15
$B_s^0 \to K^- \mu^+ \nu_\mu$	10 ± 4	21
$B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$	28 ± 8	15
$\Lambda_b^0 \to p \mu^- \bar{\nu}_\mu$	70 ± 30	11

24

Background fit

Results

Open the box

$B_s \rightarrow \mu^+ \mu^-$ branching fraction fit

- Simultaneous unbinned maximum likelihood fit to the mass spectra
- Free parameters: BR(B⁰ $\rightarrow \mu^+\mu^-$), BR(B_s $\rightarrow \mu^+\mu^-$) and combinatorial background
- Signal yield fraction in each BDT bin is constrained to expectation from $B_{d/s} \rightarrow h^+h^{\prime-}$ calibration
- Yields of exclusive backgrounds are constrained to their expectations
- Additional systematic :
 - $\Lambda_b \rightarrow p \mu \nu$ component
 - Variation of the exclusive background mass shape

Fit projections

$$\begin{array}{l} B^0 \rightarrow \pi^- \mu^+ \nu \\ B_s \rightarrow K^- \mu^+ \nu \\ B^{0/+} \rightarrow \pi^{0/+} \mu \mu \\ B_{d/s} \rightarrow h^+ h^{\prime -} \\ B_s \rightarrow \mu^+ \mu^- \\ B^0 \rightarrow \mu^+ \mu^- \\ Total \end{array}$$

Fit result

arXiv:1307.5024

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst)) \times 10^{-9}$$

Significance: 4.0σ expected 5.0σ (median)

$$BR(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(stat)^{+0.6}_{-0.4}(syst)) \times 10^{-10}$$

Significance: 2.0 σ

Correlation between BR(B $^0\rightarrow \mu^+\mu^-$) and BR(B $_s\rightarrow \mu^+\mu^-$) : 3.3%

Profile Likelihood: All parameters except $B(B_s^0 \to \mu^+\mu^-)$ are floated within their errors.

$B^0 \rightarrow \mu^+ \mu^-$ upper limit

- Use CLs method: evaluate compatibility with bkg only (CL_b) and signal+bkg (CL_{s+b}) hypothesis
- The 95%CL upper limit is defined at $CL_s = CL_{s+b}/CL_b = 0.05$

	Limit at 95%CL		
Expected bkg only	4.4 x 10 ⁻¹⁰		
Expected bkg + SM	5.4 x 10 ⁻¹⁰		
observed	7.4×10^{-10}		

CMS+LHCb combination

Combination input

- One common systematic uncertainty is taken into account, f_s/f_d (as both experiments normalize to $B^+ \rightarrow J/\psi K^+$)
- CMS result rescaled to use the latest determination of f_s/f_d

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$

Uncertainty due to f_s/f_d

34

■ LHCb:
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.87^{+1.09}_{-0.95} \pm 0.17) \times 10^{-9}$$

LHCb-CONF-2013-012 CMS PAS BPH-13-007

- Several methods used, giving compatible results
- Method based on pseudo experiments, modelling distribution with variablewidth Gaussian function (suggested by R. Barlow arXiv:physics/0406120):

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

Observation!!

$$BR(B^0 \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$$

Not statistically significant

From 1984 to now...

.. And tomorrow

- ~300 fb⁻¹ for CMS in 2020, ~8 fb⁻¹ for LHCb in 2018
- LHCb upgrade: Expect 5 fb⁻¹ per year after 2018 and 50 fb⁻¹ in 2028

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B_s^0 o \phi \gamma)$	-	0.13%	0.03%	0.02%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25 % [14]	8 %	2.5%	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/}c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [16]	8 %	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	_	$\sim 100\%$	$\sim 35\%$	~ 5 %
Unitarity	$\gamma (B \to D^{(*)}K^{(*)})$	$\sim 20^{\circ} [19]$	4°	0.9°	negligible
triangle	$\gamma (B_s^0 \to D_s K)$		11°	2.0°	negligible
angles	$\beta \; (B^0 o J/\psi K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	=======================================

* Assuming SM BR

Prospects

Short term:

- 2018: LHCb+CMS can probably obtain a 10% measurement on BR(B_s→μ⁺μ⁻)
- The current SM BR(B_s→μ⁺μ⁻) has a 10% uncertainty ⇒ crucial to improve theoretical errors!
 - Already a lot of improvement from the Lattice QCD computations ©
- Update of B⁰ will be interesting!
- Mid term:
 - 2021: each experiment could reach 10% measurement on BR(B_s→μ⁺μ⁻)
 - Sensitivity to BR(B⁰→μ⁺μ⁻) down to the SM branching fraction by 2021
- Long term:
 - Precision era for B_s→μ⁺μ⁻: effective lifetime measurement,...
 - Precision era for BR(B⁰→μ⁺μ⁻) / BR(B_s→μ⁺μ⁻)

Summary

CMS 25 fb⁻¹

$$BR(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$
 4.3 σ

$$BR(B^0 \to \mu^+ \mu^-) = 3.5^{+2.1}_{-1.8} \times 10^{-10}$$
 2.0 σ

$$BR(B^0 \to \mu^+ \mu^-) < 1.1 \times 10^{-9} @95\% CL$$

LHCb 3 fb⁻¹

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9} \text{ 4.0 } \sigma$$

$$BR(B^0 \to \mu^+ \mu^-) = 3.7^{+2.4}_{-2.1} \times 10^{-10}$$
 2.0 σ

$$BR(B^0 \to \mu^+ \mu^-) < 7.4 \times 10^{-10} @95\% CL$$

CMS + LHCb:

First observation of BR($B_s \rightarrow \mu^+ \mu^-$) !!

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

backup

Fit without Bs signal

Experimental observable

• Neutral B_s^0 mesons undergo mixing:

$$\langle \Gamma(B_S^0(t) \to f) \rangle \equiv R_H^f e^{-\Gamma_H^S t} + R_L^f e^{-\Gamma_L^S t}$$

Experimental observable is the time integrated B:

$$B(B_s^0 \to f)_{\text{exp}} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s^0(t) \to f) \rangle dt$$

Theoretical definition for the prediction:

$$B(B_s^0 \to f)_{\text{theo}} \equiv \frac{\tau_{B_s^0}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0}$$

Time integrated prediction:

$$B(B_s^0 \to \mu^+ \mu^-)_{\text{exp}}^{\text{SM}} = (3.56 \pm 0.30) \times 10^{-9}$$

De Bruyn et al., PRL 109, 041801 (2012), uses $\Delta\Gamma_s$ from LHCb-CONF-2012-002

Selection

Tighten initial selection to reduce combinatorial Bkg: cut on a output of a MVA combining information topology background rejection for 92% signal efficiency.

B Candidate

impact parameter* impact parameter χ^2 χ^2 of the vertex pointing angle distance of closest approach*

Muons

min IP

*common with BDT

BDT Variables

Polarisation Angle:

angle between the muon momentum in the B rest frame and the vector perpendicular to the B momentum and the beam axis

B Isolation:

$$I = \frac{p_{T,B}}{p_{T,B} + \sum_{tracks} p_{T,track}}$$

sum running on the tracks such that $\delta \eta^2 + \delta \phi^2 < 1.0$

Exclusive background

$$B^0 \to \pi^- \mu^+ \nu_\mu$$
, $(1.44 \pm 0.05) \cdot 10^{-4}$

Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.

$$B_s^0 \to K^- \mu^+ \nu_\mu \quad (1.27 \pm 0.49) \cdot 10^{-4} \left[\quad \mathcal{B}(\Lambda_b^0 \to p \mu^- \nu) = (4.75 \pm 2.11) \cdot 10^{-4} \right]$$

[40] W.-F. Wang and Z.-J. Xiao, The semileptonic decays B/B_s → (π, K)(l⁺l⁻, lν, νν̄) in the perturbative QCD approach beyond the leading-order, arXiv:1207.0265.

$$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6(\text{stat.}) \pm 0.1(\text{syst.})) \cdot 10^{-8}$$

LHCb Collaboration, R. Aaij et al., First observation of the decay $B^+ \to \pi^+ \mu^+ \mu^-$, JHEP 1212 (2012) 125, arXiv:1210.2645.

$$\mathcal{R} = \frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi\ell\nu X)}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)}$$
= 0.132^{+0.041}_{-0.037}(stat) ± 0.031(sys)^{+0.032}_{-0.020}(lifetime)
= 0.132^{+0.051}_{-0.052}

CDF Collaboration, F. Abe et al., Observation of the B_c meson in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 81 (1998) 2432, arXiv:hep-ex/9805034.