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●Introduction:
● recent studies;
● Motivations;
● looking forward...

●Materials:
● sensors;
● set-ups.

●Methods:
● calibration;
● measurements: I-V, punch-through, β-source, laser;
● analysis details.

●Experimental results and discussion:
● I-V and punch-through;
● β-source;
● laser.

●Summary and outlook.
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IntroductionIntroduction
●Recent studies:

● 3D sensors main features:
● Short “collection”-path, long “generation”-path => radiation-hard (up to 5*1015 

n
eq

/cm2 and beyond[1]).
● Dead zones between same type columns => non-uniform collection.
● Narrow bulk => high capacitance => high noise.
● Complex layout => challenging fabrication.

● Technologies:
● Original 3D[2]:

● Exploit of the advantages.
● Complexity.

● Single-type column (STC):
● Much simpler.
● Large dead zones.

● Double-type columns (DTC):
● Better performances than STC.
● Simpler than the originals.

● Charge multiplication observed[3].
● First production of 3D pixels accomplished at FBK and CNM with DTC [4].

[1] The ATLAS IBL Coll., Jinst 7, 2012.
[2] Dalla Betta et al., PoS Vertex 2012, 2012.
[3] Köhler et al., NIMA 659, 2011.
[4] Da Via et al., NIMA 649, 2012.
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IntroductionIntroduction
●Motivations:

● Test radiation hardness up to higher fluences in view of the 
HL-LHC
● => Samples highly irradiated.
● Despite the higher noise, test the signal to noise ratio (at those 

fluences):
● => β-source measurements.

● Interest on the spatial uniformity with the improved technology:
● => laser measurements.

●Looking forward...
● How to exploit the charge multiplication?
● How important is the non-uniformity?
● Is a new technology required?
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MaterialsMaterials
●Samples[1]:

● Double-sided 3D strip sensors (FBK ATLAS production wafers [2]).
(Strips => easier testing with standard readout electronics.)

● 4”, FZ, <100>, p-type, 230+/-20 um thickness, ~20 kΩ*cm.
● 102 strips ~8 mm length, with 80 um pitch between same type columns and 40√2~56 um 

between different column types, slim edges.
● Columns passing completely through the substrate, ~11 um diameter, not filled by 

polysilicon.
● P-spray, front side strip connection by n+ diffusion (AC coupling, punch-trough biasing but 

readout with R-C fanins) or combination of metal and diffusion (DC coupling, readout by 
R-C fanins).

● Irradiated at 25 MeV protons (NIEL hardness factor of 1.85) at the Karlsruhe Compact 
Cyclotron (annealing only due to holding during experiments).

[1] M. Povoli et al., NIMA 730, 2013.
[2] Da Via et al., NIMA 649, 2012.

Sensor Fluence Coupl.

ID [n_eq/cm^2]

W19_SD2 2×10^15+/-10% AC

W21_SD2 2×10^15+/-10% AC

W24_SD1 5×10^15+/-10% AC

W24_SD2 5×10^15+/-10% AC

W19_SD3 2×10^16+/-10% DC

W21_SD3 2×10^16+/-10% DC
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MaterialsMaterials
●Set-ups:

● I-V:
● Standard probe station, before, through AliBaVa, after irradiation.

● Punch-through:
● Stated the very high resistance before punch-trough, measurements 

made with a custom circuit (inverted amplifier with operational amplifier).
● β-source:

● AliBaVa (Beetle chip).
● 37 Mbq 90Sr source.
● 2 scintillator in coincidence.

● Laser:
● AliBaVa.
● 974 nm => ~90 um penetration depth,

~4.5 um FHWM.
● Horizontal plane motorized stage.

● Simulations:
● TCAD with Synopsis Sentaurus,

modified “Perugia” model [1].

[1] Pennicard et al., NIMA 592, 2008.
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MethodsMethods

[1] Meroli et al., Jinst 6 P06013, 2012.

●Procedures:
● β-source:

● Calibration:
● Sample: unirradiated sensor of known thickness.
● Method: MPV vs. temperature; assumption of the generated charge 

(0.027ln(thick.)+0.176 [1]); linear fit of the gain vs. temperature.
● Measurements:

● AliBaVa “kazu” configuration (>25 ns peaking time); T∈[-41,-27] °C, RH<~10%.
● Runs: pedestals+noise+source, at different voltages.

● Analysis details:
● Residual cut<~70 strips; time cut=10 ns around the peak; Clustering: seed cut 

also down to 2, neighbour cut also to 1.5 (maintaining clear signal).

● Laser:
● No calibration => relative measurements.
● Measurements:

● AliBaVa standard configuration (~25 ns peaking time); T<-35 °C, RH<~10%.
● Runs: pedestals+noise+synch.+scan, at different voltages.

● Analysis details:
● Sometimes realignment/rebinning (bilinear interpolation, I-order).
● Representation of the sum of two neighbour strips or a single strip.
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Experimental results and discussionExperimental results and discussion
●I-V and punch-through:

● Leakage current and break-down voltage increase with the fluence as 
expected.

● Punch-trough biasing still effective after irradiation.
[1] Betancourt et al., IEEE TNS 59(3), 2012.

●α=ΔI/(V*Φ
eq

)=3.3÷3.7*10-17 A/cm.

●V
BD

=40 → 125÷175 V.

●V
PT

~50 V.

[1]
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Experimental results and discussionExperimental results and discussion
●β-source: pulse, spectrum, spatial distribution, clustering

● With high irradiation, strict clustering but clear peak.
● Pretty large clusters at high voltage (narrow pitch).

●2*10-16 n
eq

/cm2.

●V
bias

=200 V; -30+/-1 °C.
●Seed cut=3.5, neighbour cut=3.
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Experimental results and discussionExperimental results and discussion
●β-source: charge collection versus bias

● Charge collection in agreement with simulations. Significant also at low voltages 
(see 20 V, 2*1015 n

eq
/cm2).

● No charge multiplication (maybe at 2*1016 n
eq

/cm2).
● Noise dominated by electronics, leakage current? (Interstrip/bulk capacitance<10%.)

●Marker: meas.
●Lines: sim.
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Experimental results and discussionExperimental results and discussion
●β-source: performances comparison

● Performances are confirmed.

Prediction:

[1] ATLAS IBL Coll., Jinst 7, 2012.
[2] Köhler et al., NIMA 659, 2011.
[3] Da Via et al., NIMA 604, 2009.

●this work
(excluding the W19_SD2)
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Experimental results and discussionExperimental results and discussion
●Laser: pre-irradiation: results and simulations

● Uniform response.

●20 V
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1015 n

eq
/cm2: results and simulations

● Significant change with bias: collection from junction columns to in 
between those of the same strip => “compensation” effect: sum for same 
strip, subtraction for neighbours.

●40 V ●120 V
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1015 n

eq
/cm2: discussion: “compensation” effect

● Significant compensation effect due to limited integration time and hole deficit[1].

●100 V, top

●Weighting field

Large negative zones

●junction columns profile ●ohmic columns profile

From Ramo's Th.
●E

w
~<0

●E<<0
●vel<0
=> I(t:low)<0

[1] Pöhlsen, RD50 workshop talk 2013.11.14, Experimental study of the Si-SiO2 interface region... 
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1016 n

eq
/cm2: results and simulations

● Large dead zones also at 160 V (with ~20% collection).
● NOTE: collecting 5 ke- at 150 V, an average unit cell collection of 50% 

means peaks collecting effectively 10 ke-!
● Significant collection at the ohmic columns also at low voltage. 

Double-junction on p-type??? Not predicted!

●40 V ●160 V
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1016 n

eq
/cm2: discussion: “compensation” effect

● Larger than at lower fluence: relatively higher field distributed closer to the junction columns.

Very large and very negative zones

●junction columns profile ●ohmic columns profile
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1016 n

eq
/cm2: comparison with CNM sensors

● (Measured charge multiplication.)
● Similarly high collection at the ohmic

 columns.

●3D irradiated at KIT.
●~285 um thickness, ~215 um columns overlapping.
●~56 um column pitch
●Same set-up.

[1] Köhler et al., NIMA 659, 2011.

●2*1016 n
eq

/cm2.
●100 V.
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Experimental results and discussionExperimental results and discussion
●Laser: 2*1016 n

eq
/cm2: discussion: hole trapping and ballistic 

deficit

● With the low field, the slower holes are not integrated and are more prone 
to recombine. Increasing the bias, the effect is reduced.

n+ p+

distance

n+

p+

both
collected

only e-
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Summary and outlookSummary and outlook
●Motivations:

● Test radiation hardness up to 2*1016 n
eq

/cm2: charge collection, spatial uniformity.
●Results:

● New sensors DTC: reasonable increase in the breakdown voltage before and after 
irradiation achieved.

● Punch-through effective at 2*1015 n
eq

/cm2.
● Charge collection as expected. Significant also at low voltages (6 ke- @ 20 V, 

2*1015 n
eq

/cm2). No charge multiplication observed.
● Collection still far to be uniform at high irradiation fluences:

● Compensation effect due to limited integration time and holes deficit.
● For 2*1015 n

eq
/cm2 increasing the bias the highest collection moves from around 

the junction columns to in between them; still due to compensation.
● High collection close to the ohmic columns: determined by the amount of the 

holes contribution to the overall signal (how big deficit).
●Outlook:

● Smaller inter-electrode spacing to have more uniform collection at lower voltages. 
Higher break-down voltage needed (encouraging results in new FBK samples[1]).

● Changing integration time to investigate the compensation effect and the hole 
deficit.

● Test beam or X-rays!!!
[1] Dalla Betta et al., IEEE NSS N41-1, 2013.
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Summary and outlookSummary and outlook
●Motivations:

● Test radiation hardness up to 2*1016 n
eq

/cm2: charge collection, spatial uniformity.
●Results:

● New sensors DTC: reasonable increase in the breakdown voltage before and after 
irradiation achieved.

● Punch-through effective at 2*1015 n
eq

/cm2.
● Charge collection as expected. Significant also at low voltages (6 ke- @ 20 V, 

2*1015 n
eq

/cm2). No charge multiplication observed.
● Collection still far to be uniform at high irradiation fluences:

● Compensation effect due to limited integration time and holes deficit.
● For 2*1015 n

eq
/cm2 increasing the bias the highest collection moves from around 

the junction columns to in between them; still due to compensation.
● High collection close to the ohmic columns: determined by the amount of the 

holes contribution to the overall signal (how big deficit).
●Outlook:

● Smaller inter-electrode spacing to have more uniform collection at lower voltages. 
Higher break-down voltage needed (encouraging results in new FBK samples[1]).

● Changing integration time to investigate the compensation effect and the hole 
deficit.

● Test beam or X-rays!!!
[1] Dalla Betta et al., IEEE NSS N41-1, 2013.

Thank you!!!
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SparesSpares
●Sensor details.
●Clustering effect.
●Hole deficit for 2*1015 n

eq
/cm2.

●Tilted cell.
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Spares: sensors detailsSpares: sensors details
●Coupling details:

● AC: biased by punch-through from the bias line and have integrated coupling 
capacitors

● DC: can be used via an external R-C fan-in (R= 1 MΩ, C=275 pF).

●Methods details:
● Results were qualitatively similar, but in the AC configuration, the non-optimized 

thickness of the coupling oxide layer (which is about 1 μm due to other process 
constraints) caused the coupling capacitance (~8 pF) to be insufficient, and 
higher signal and signal/noise values were obtained by using R-C chips. Thus, 
although the punch-through bias was proved to properly work also after 
irradiation, all functional tests discussed here were carried out by using external 
R-C chips.
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Spares: clustering effect (1)Spares: clustering effect (1)

●β-source: pulse, spectrum, spatial distribution, clustering

●5*10-15 n
eq

/cm2.

●V
bias

=150 V; -40+/-2 °C.
●Seed cut=1, neighbour cut=1.
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Spares: clustering effect (2)Spares: clustering effect (2)

●β-source: pulse, spectrum, spatial distribution, clustering

●5*10-15 n
eq

/cm2.

●V
bias

=150 V; -40+/-2 °C.
●Seed cut=3, neighbour cut=1.2.
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Spares: hole deficit at 2*10^15 n_eq/cm^2Spares: hole deficit at 2*10^15 n_eq/cm^2
●Laser: 2*1015 n

eq
/cm2: discussion: hole trapping and ballistic 

deficit

● Before depletion, holes still collected and/or much lower electron 
contribution close to the ohmic columns (relative collection!!!).

n+ p+
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Spares: tilted cellSpares: tilted cell

●2*1015 n
eq

/cm2
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