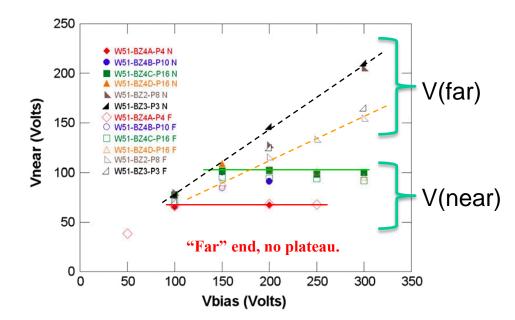
Status of the Low-Resistance (LowR) Strip Sensors Project

CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán

- Motivation
- Proposed solution
- Technology and design
- First batch tests
- New batch
- Additional solutions
- Conclusions


Motivation

- In the scenario of a beam loss there is a large charge deposition in the sensor bulk and coupling capacitors can get damaged
- Punch-Through Protection (PTP) structures used at strip end to develop low impedance to the bias line and evacuate the charge

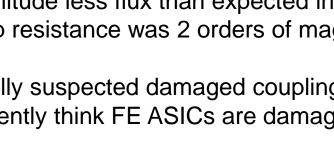
But...

- Measurements with a large charge injected by a laser pulse showed that the strips can still be damaged
 - The implant resistance effectively isolates the "far" end of the strip from the PTP structure leading to the large voltages

Example: HPS experience

- Heavy Photon Search (HPS) is an experiment where Si sensors are intentionally put SCIPP \geq close proximity to intense electron beam in JLab.
- APV-25 as FE chips; and HPK sensors for D0 run2b: P-on-n, 10 cm long. \geq
- R(strip) ~ 1.8 MQ (=> 180 kQ/cm, compared to 15 kQ/cm in ATLAS07). \triangleright
- >There is a danger of beam loss with showering the innermost strips.
- => Beam test in SLAC e- beam simulating the shower.
- \geq Saw issues at higher Bias and flux.

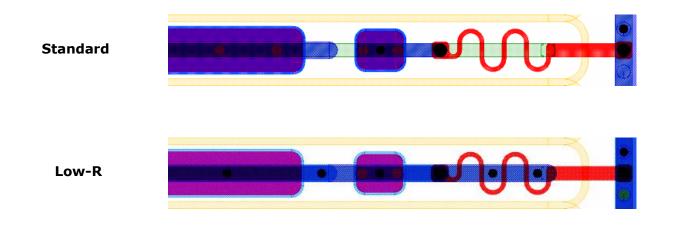
P. Hansson et al (SLAC)


Time	Bunch	Bias [V]	Flux/strip	Comment
	Charge [pC]			
~11:00	~0.001	180	10^1 e-	
11:36	1	180	10^4 e-	
	1	250	10^4 e-	
	1	350	10^4 e-	
	1	400	10^4 e-	
	1	500	10^4 e-	
12:00	10	180	10^5 e-	
	10	350	10^5 e-	onset
	10	500	10^5 e-	onset
	100	180	10^6 e-	problems
	100	250	10^6 e-	
	100	350	10^6 e-	

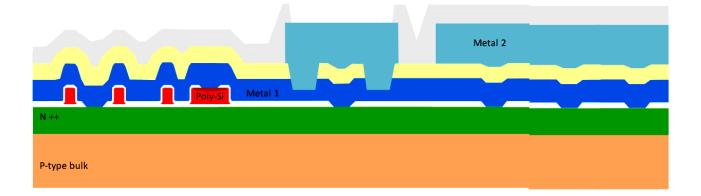
<u>Note:</u> The onset of problems showed up at ~ order of magnitude less flux than expected in ATLAS. But the strip resistance was 2 orders of magnitude higher!

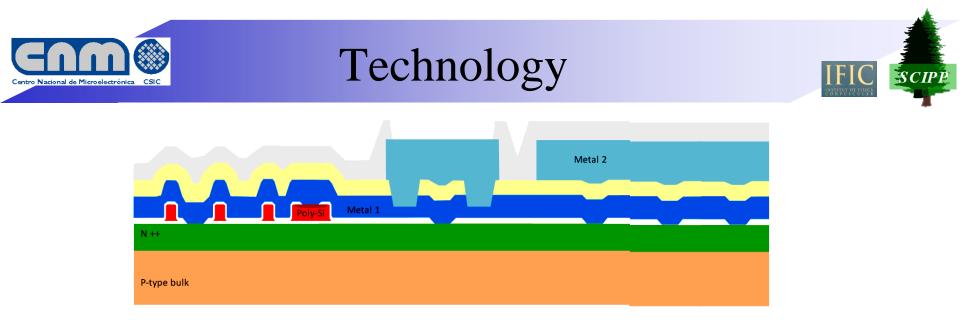
- \Rightarrow Initially suspected damaged coupling capacitors.
- \Rightarrow Currently think FE ASICs are damaged.

HPS Test Tracker



- To **reduce the resistance of the strips** on the silicon sensor.
- Not possible to increase implant doping to significantly lower the resistance. Solid solubility limit of the dopant in silicon + practical technological limits (~ 1 x 10²⁰ cm⁻³)
- Alternative: deposition of Aluminum (Metal 1) on top of the implant:


$$\succ$$
 R_□(Al) ~ 0.04 Ω/□ ⇒ 20 Ω/cm



- Metal layer deposition on top of the implant (first metal) before the coupling capacitance is defined (second metal).
 - Double-metal processing to form the coupling capacitor
 - A layer of high-quality dielectric is needed between metals.
 - Deposited on top of the first Aluminum (not grown)
 - $rac{}$ Low temperature processing needed not to degrade Al: T < 400 °C

Initial experiments with MIM capacitors

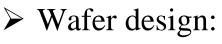
- Low temperature deposited isolation:
 - Plasma Enhanced CVD (PECVD): Process at 300-400 °C
 - > 20 pF/cm → ~ 3000 Å
- 3 technological options:

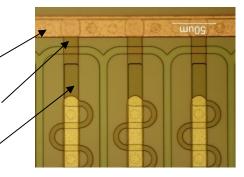
Silane: 3000 Å of SiH₄-based silicon oxide (SiO₂) deposited in 2 steps. TEOS: 3000 Å of TEOS-based oxide deposited in 2 steps ("Tetra-Etil Orto-Silicate") Nitride: 1200+1200+1200 Å of TEOS ox. + Si₃N₄ + SiH₄ ox. (Tri-layer)

• Yield results for the largest caps (> 1 mm²):

%	Silane	TEOS	Nitride	
C1	81%	86%	94%	

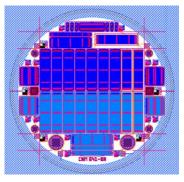
Best for nitride ⇒ Less pinholes due to Tri-layer

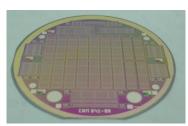



> PTP design:

• Design of experiments (DOE): varying $p, s \Rightarrow d$

DOE		N–P separation 's' [um]		
		12	8	6
P-stop width 'p' [um]	8	32	24	20
	6	30	22	18
	4	28	20	16
Total PTP distance		nce 'd'		

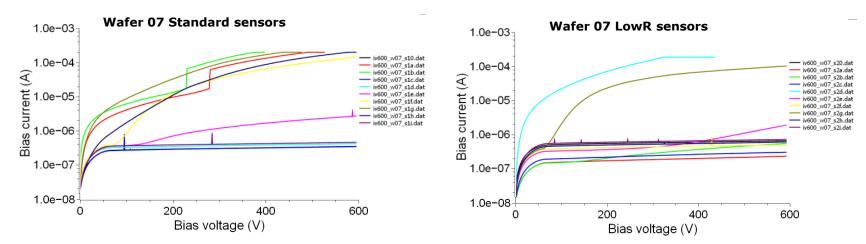

- 10 ATLAS-barrel-like sensors: "LowR sensors"
 - 64 channels, ~2.3 mm long strips
 - First metal connected to the strip implant to reduce R_{strip}
 - Each sensor with a different PTP geometry (with polysilicon bridge)
- 10 extra standard sensors for reference (no metal in implant). Identical design to the LowR but without metal strip on top of the implant



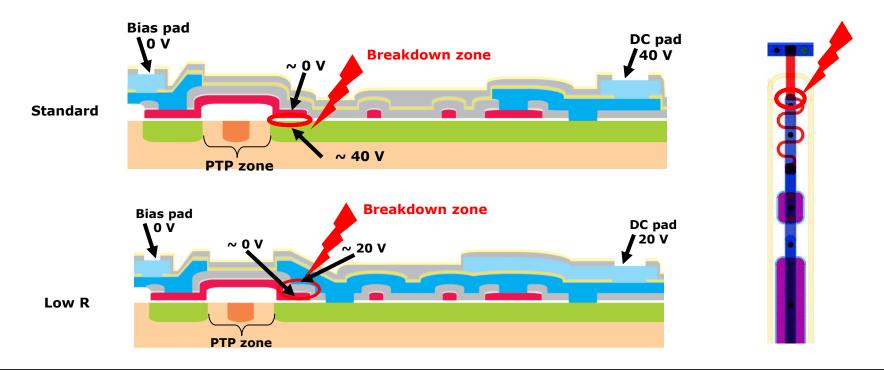
Bias rail

Poly gate

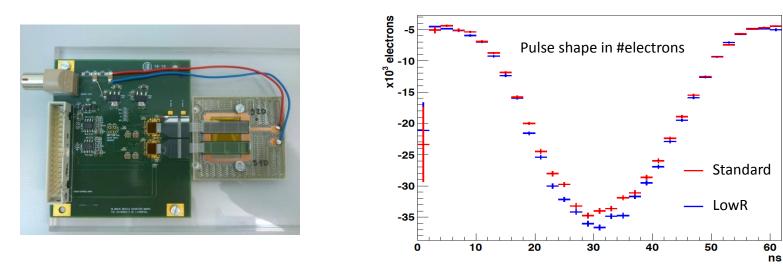
Implant



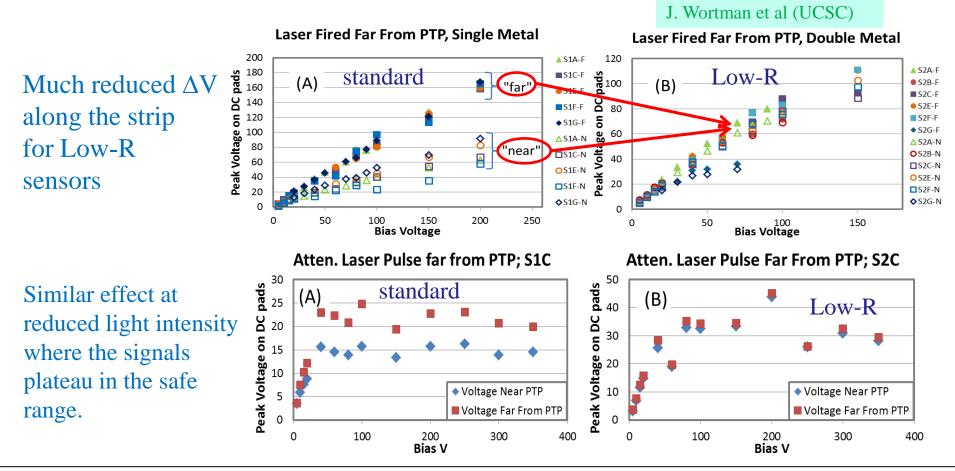
- \succ IV measurements, sensors were scanned from 0 to 600 V.
- ➢ CV, V_{FD}, Bias resistor (R_{BIAS}), coupling capacitance (C_{COUP}), Inter-strip resistance, …
- Both standard and LowR sensors show similar general characteristics.


➢ R(implant) is reduced by ~3 orders of magnitude:
13.6 kΩ/cm (standard) → 23 Ω/cm (LowR).

First batch PTP tests


- > PTP tests show unexpected behavior:
 - Breakdown voltage independent of PTP structure geometry
 - at ~40 V in standard sensors and at ~20 V in LowR sensors
 - Oxide breakdown at a different place in the strip occurs before PTP is activated.
 - Thin oxides overlooked during fabrication
 - Only critical when PTP structures are present and tested

- Concerns about possible pulse shape change in LowR sensors
- Standard and LowR sensors are tested with the ALIBAVA System and an IR laser.
- Each sensor is read by one Beetle ASIC



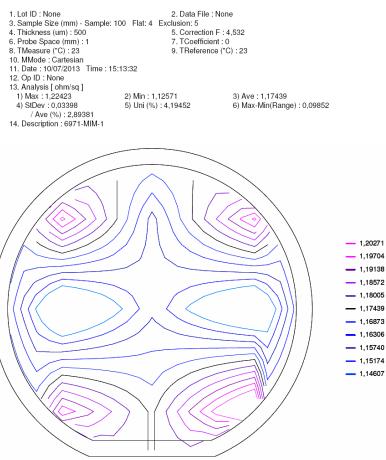
Pulse shape with the sensor fully depleted. The pulse shapes are identical for standard and LowR detectors with a small, negligible difference at the peak

- \succ We also evaluated dynamic response with laser tests.
- > The oxide issue notwithstanding, the laser tests show that the low strip resistance technology equalizes the potential along the strip, as intended.

Miguel Ullán (CNM-Barcelona)

- > New batch being processed correcting this:
 - 1) Thicker thermal oxide in the coupling capacitor area to avoid breakdown in standard sensors
 - 2) Thicker and tri-layer oxide deposited between poly and metal in LowR sensors to avoid breakdown in LowR sensors
 - 3) In some extra sensors, new metal mask (METAL-B) with no metal on top of bias resistor area to avoid the possibility of breakdown in that area
 - 4) Some wafers will have a reduced p-stop doping to make sure we have PTP
- The process is well advanced. We expect the wafers ready for middle of December

- Other methods to obtain LowR sensors being studied:
 - TiSi₂: allows the use of high temperature steps after the oxide deposition
 - \rightarrow oxide densification \rightarrow higher yield
 - Highly doped polysilicon: allows the growth of thermal oxide after it
 - \rightarrow high quality oxide
 - \rightarrow back to "standard" process


	sheet R (Ohm/#)	kOhm/cm	strip R (kOhm)
Implant	22	11	25.3
Metal	0.04	0.02	0.05
Metal-B			0.946
TiSi2	1.2	0.6	1.38
Poly	3	1.5	3.45

Titanium Silicide (TiSi₂)

- \succ TiSi₂ formation technology at CNM
 - Good formation of TiSi₂ layer
 - Low sheet resistance: $\sim 1.2 \ \Omega/\Box$
 - Densification at 900 °C , 30 min
 - Self aligned process
- TiSi₂ MiM capacitors fabricated
 - 100 % yield up to 20 V
 - More tests up to 100 V
 - Risk of higher leakage currents because TiSi₂ layer «consumes» Si.
- Polysilicon-Metal capacitors to be fabricated next

Contour Map

- Low resistivity strips (LowR) proposed to protect strip sensors in the event of a beam loss making the PTP more effective
- First implementation with Aluminum layer in contact with the implant to drastically reduce strip resistance
 - LowR sensors show similar behavior as standard sensors
 - Initial dinamic laser tests show an effective reduction of the implant voltage
 - New batch being processed to overcome a technological problem in the first batch that prevents full test
- New possible implementations being tried with TiSi₂ and polysilicon to assure a better coupling capacitor formation, and a more standard processing