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BeamCal Motivation 
Basic Idea: At ILC two-photon processes with missing scattered electrons can mimic 
New Physics phenomena. BeamCal is meant to capture the primary particles 
scattered at small angles: 5 to 40 mrad. This is a sampling calorimeter with tungsten 
layers as absorber and sensors in-between. 
 

Challenge: GRad of radiation. 
 
Studies of sensor material:  
•  GaAs 
•  Diamond 
•  Saphire 
•  Silicon Carbide 
 
 We want to find out suitability of “conventional”  
Si sensors for this purpose. 
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GaAs study with ~10 MeV electron beam, 
K. Afanaciev et al, JINST 7 (2012) P11022 : 

kGy 



Prior Electron Radiation Studies 
There were prior studies of Si radiation hardness  
with electrons: 
•  J.M. Rafi et al, NIM A 604 (2009) 258:  
studied HR Si with 2 MeV e- up to  
5x10^16 e-/cm^2. They observed x36  
less damage from IV studies than  
expected from NIEL. 
 
 
 
 
 

•  S. Dittongo et al, NIM A 546 (2005) 300: studied HR Si with 900 MeV e- up to 
6.1x10^15 e-/cm^2. Observed x4 less damage than expected from NIEL. 
•  S. Dittongo et al, NIM A 530 (2004) 110: studied HR Si with 900 MeV e- up to 
2.1x10^15 e-/cm^2. Observed <3% CCE decrease after annealing. 
 
 Is there energy-dependent NIEL hypothesis breakdown with electrons? 
(Origination of point-like defects rather than clusters at lower energy intuitively 
makes sense…) 
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What to study? 
Besides EM radiation, there will be a shower => energy spread and potentially a 
nuclear component: 

•  Nuclear (“giant dipole”) resonances at 10-20 MeV (~Ecritical) 
•  Photoproduction: Threshold seems to be about 200 MeV 
•  Nuclear Compton scattering: Threshold at about 10 MeV; ∆ resonance at 

340 MeV 
   These are largely isotropic; must have most of hadronic component 
develop near sample 
 
Want to assess CCE under realistic conditions. 
Example from known studies (N-on-p FZ): 
•  Assuming 50% CCE drop as the FOM                                                           
(depends on electronics!) => ~0.6x10^15 neq 
• NIEL scaling to max D(E, el) =>                                                                                   
7.9x10^15 e-/cm^2, or ~260 MRad. 
 
In reality NIEL scaling issue and presence of                                                                   
hadrons can significantly modify the guesstimate. 
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Hara et al, NIM A, 636 (2011) S83 



LCLS and ESTB (FACET) 
Want to use > 1 GeV beam to capture the nuclear processes 
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Hadronic Processes in EM Showers 

Up to 100W beam 
absorption; operate 
below freezing to 
avoid annealing 

Modeling hadronic components: tungsten pre- and post-radiator 
(a stack of 7 mm tungsten plates borrowed from Leszek Zawiejski, INP, Krakow)  
Sensors were lightly biased and cooled by Peltier elements to -10 C, 0 C. 
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Detector board  
cooled with  
Peltier wrt  
post-radiator,  
which was cooled  
with a chiller. 

Beam direction 
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Rastering 
Want to irradiate a sizable region of the sensor => will use rastering. 
Plan on covering 0.6x1.5 cm2 region with 0.05 cm steps. 
Dose rate: 
 
  (100 MRad at 1 nA with 13.6 GeV beam in 5 hours)… max rate was 28 MRad/h 
Will use CCE with collimated Sr-90 source as a primary observation. 
Will need good alignment, dose cross-calibration. 
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The dose estimates are based on 
the beam bunch counting and 
simulation of the shower  
development. But we did a 
dedicated run with RADFETs, 
where the measurements agreed 
with the estimates within 10%. 
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Cooling 
Sizable irradiation duration => Special considerations for cooling and 
measurements. Target <= -10C: 
•  Sensors mounted on boards allowing repeated CCE measurements on the 
same devices at different doses. 
•  Cooling the devices to avoid annealing (the “quick disconnect” boards avoid 
warmp-up diruing wirebonding) 
•  Cooling the tungsten. 
•  Cold CCE measurements, and transport. 
 

Post-radiator with cooling 
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Test box being put together 

Cold box in situ 
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CCE system 
Will use binary readout CCE system, that was used in prior irradiation studies. It 
gives the same answer as AliBaVa within 10%. 
Redesigned the FE board to accommodate the “quick connect” detector boards. 
The FE and detector boards have permanent pitch adaptors made by AliBaVa. 
 
 

Sensor + 
FE ASIC 

DAQ FPGA  
with Ethernet 

Back side of the boards 

Scintillator 

Detector 
board 

Sensor PAs ASIC 
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Sensors and Doses 
Have used Micron and HPK strip sensors covering 4 technologies. 
All devices are ~300 um thick. 
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HPK, n-on-p, FZ 

Micron, n-on-p, MCz 

Micron, p-on-n, FZ 

Micron, p-on-n, MCz 

Warmed up to 130 C 
overnight due to cooling 
system failure. 



Charge Collection vs. Bias Voltage: Lower Dose 
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Highest Doses on N-type bulk Si 
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The plan with N-type Float Zone sensor 
was to do a series of 1-h long annealing 
steps: room T, 40 C, 50 C, 60 C… 
 
Room T step is done… twice; the rest is 
in progress. 
 



Charge Collection Summary 
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HPK, n-on-p, FZ 

Micron, n-on-p, MCz 

Micron, p-on-n, FZ 

Micron, p-on-n, MCz 

Warmed up to 130 C 
overnight due to cooling 
system failure. 



Conclusions and Further Studies 

We  are studying sensor damage with EM radiation for ILC BeamCal. A 
particular care is taken to model hadronic component. The first results are 
promising. A paper is submitted to NIM. 
 
So far we have seen only a moderate decrease in collected charge for doses 
up to 220 MRad. N.B.: The device with highest dose had been un-intentionally 
annealed. 
 
Studies in progress: 
• Annealing effects with IV, CCE. 
• Simulation of the hadronic component. 
 
Further studies of radiation damage with SLAC beam is a possibility: 
• Higher doses 
• Different materials (e.g. direct cross-comparison between Si and GaAs). 
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Back-Up Slides 
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N-type Float Zone 
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4 X0 Radiator 

8 X0 Beam 
Dump 

(Slides into 
position) BEAM 
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Coincidence Beam 
profile (Sr90 into Si 

and Scintillator) 

Efficiency vs. 
threshold 

Median 
Collected 
Charge 

Charge Collection Measurement 
2.3 MeV e- through sensor into scintillator 
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5.5 GeV Shower Profile 
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NIEL Plot 
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D(electrons,max) = (1/13) D(1MeV, n) 



Shower Max Results 

 Photon production ~independent of incident energy! 
1.0 2.0 3.0 

Electrons, per 
GeV incident 

energy 

Photons per 
electron 

Photons with 
 E > 10 MeV 
per electron, 

x10 

Photons with 
E > 100 MeV 

per electron, x 
100 
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mm 
from 

center 

0 1 2 3 4 

0 13.0 12.8 11.8 9.9 8.2 
1 13.3 12.9 12.0 
2 13.3 12.9 12.0 
3 13.1 12.8 11.8 8.2 
4 13.0 12.6 11.7 
5 12.3 
6 11.6 10.7 
7 10.4 
8 8.6 8.0 6.4 

Fluence (e- and e+ per cm2) per incident 5.5 GeV electron  
(5cm pre-radiator 13 cm post-radiator with 1m separation) 

¼ of area 
to be 

measured 

Center of 
irradiated 

area 

¼ of 
rastoring 

area (0.5mm 
steps) 
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e+/e- ENERGY (GEV) 

BeamCal Incident Energy Distribution 

2 4 6 8 10 
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Illumination Profile 
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HOW THE MACHINE ACTUALLY RUNS 
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